-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathfine_tuning_copa.py
281 lines (228 loc) · 9.83 KB
/
fine_tuning_copa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import os
import json
import torch
import statistics
import numpy as np
import pandas as pd
from ray import tune
from dataclasses import dataclass
from typing import Optional, Union
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import accuracy_score
from datasets import (DatasetDict, Dataset)
from transformers import (AutoModelForMultipleChoice, PreTrainedTokenizerBase,
AutoTokenizer, TrainingArguments, Trainer)
from transformers.tokenization_utils_base import PaddingStrategy
from utils import lower_nth
def compute_metrics_v1(pred):
"""
a sightly different implementation of computing metrics, essentially same as compute_metrics
:param pred:
:return:
"""
predictions = pred.predictions[0] if isinstance(pred.predictions, tuple) else pred.predictions
label_ids = pred.label_ids
preds = np.argmax(predictions, axis=1)
return {"accuracy": (preds == label_ids).astype(np.float32).mean().item()}
def compute_metrics(pred):
labels = pred.label_ids
preds = pred.predictions.argmax(-1)
acc = accuracy_score(labels, preds)
return {'accuracy': acc}
# loading parameters
with open('config/fine_tuning_config.json') as f:
params = json.load(f)
# initialize Weights & Biases
os.environ["WANDB_API_KEY"] = params['WANDB_API_KEY']
# creating a dataframe to save results
df_results = pd.DataFrame()
task_type = params['task_type']
model_checkpoint = params['model_checkpoint']
random_seeds = params['random_seeds']
tokenizer_name = params['tokenizer_name']
running_output_path = params['running_output_path']
tuning_output_path = params['tuning_output_path']
# ending0 and ending1 are the two choices for each question
ending_names = ["ending0", "ending1"]
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=False)
def preprocess_function(examples, task=params['task_type'], prompt=params['add_prompt']):
if task not in ['seq', 'multi', 'nsp']:
print("Task value should be one of the following: \'seq\' or \'multi\' or \'nsp\'")
return
if task == 'multi':
# Repeat each first sentence two times to go with the two possibilities of second sentences.
first_sentences = [[context] * 2 for context in examples["sent1"]]
# Grab all second sentences possible for each context.
question_headers = examples["sent2"]
if prompt == 1:
second_sentences = [[f"{header} {lower_nth(examples[end][i], 0)}" for end in ending_names] for i, header in
enumerate(question_headers)]
else:
second_sentences = [[f"{examples[end][i]}" for end in ending_names] for i, header in
enumerate(question_headers)]
elif task in ['seq', 'nsp']:
first_sentences = [examples["sent1"]]
second_sentences = [examples["sent2"]]
# Flatten everything
first_sentences = sum(first_sentences, [])
second_sentences = sum(second_sentences, [])
# Un-flatten
if task == 'multi':
tokenized_examples = tokenizer(first_sentences, second_sentences, max_length=params['max_length'],
truncation=True)
return {k: [v[i:i + 2] for i in range(0, len(v), 2)] for k, v in tokenized_examples.items()}
elif task in ['seq', 'nsp']:
tokenized_examples = tokenizer(first_sentences, second_sentences, max_length=params['max_length'],
truncation=True)
return tokenized_examples
def copa_preprocess_function(examples, prompt=params['add_prompt']):
# Repeat each first sentence two times to go with the two possibilities of second sentences.
if prompt == 1:
first_sentences = [[context] * 2 for context in examples["startphrase"]]
else:
first_sentences = [[context] * 2 for context in examples["sent1"]]
# Grab all second sentences possible for each context.
question_headers = examples["sent2"]
second_sentences = [[f"{examples[end][i]}" for end in ending_names] for i, header in enumerate(question_headers)]
# Flatten everything
first_sentences = sum(first_sentences, [])
second_sentences = sum(second_sentences, [])
# Un-flatten
tokenized_examples = tokenizer(first_sentences, second_sentences, max_length=params['max_length'], truncation=True)
return {k: [v[i:i + 2] for i in range(0, len(v), 2)] for k, v in tokenized_examples.items()}
@dataclass
class DataCollatorForMultipleChoice:
"""
Data collator that dynamically pads the inputs for multiple choice received.
"""
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
def __call__(self, features):
label_name = "label" if "label" in features[0].keys() else "labels"
labels = [feature.pop(label_name) for feature in features]
batch_size = len(features)
num_choices = len(features[0]["input_ids"])
flattened_features = [[{k: v[i] for k, v in feature.items()} for i in range(num_choices)] for feature in
features]
flattened_features = sum(flattened_features, [])
batch = self.tokenizer.pad(
flattened_features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
)
# Un-flatten
batch = {k: v.view(batch_size, num_choices, -1) for k, v in batch.items()}
# Add back labels
batch["labels"] = torch.tensor(labels, dtype=torch.int64)
return batch
raw_datasets = DatasetDict()
raw_datasets['train'] = Dataset.from_csv(params['train_data'])
raw_datasets['test'] = Dataset.from_csv(params['test_data'])
train_dataset = raw_datasets['train']
test_dataset = raw_datasets['test']
le = LabelEncoder()
le.fit_transform(train_dataset['label'])
train_dataset = train_dataset.map(
copa_preprocess_function,
batched=True,
)
test_dataset = test_dataset.map(
copa_preprocess_function,
batched=True,
)
# since COPA doesn't have separate train and dev sets, we split its dev set into train and dev
train_dev_dataset = train_dataset.train_test_split(test_size=0.1, seed=42)
# -------------------------------------------------------------------
# creating texts of right/wrong answers to use them in error analysis
test_results = {'test_accuracy': list()}
df_test_dataset = test_dataset.to_pandas()
texts_right = list()
texts_wrong = list()
for idx, row in df_test_dataset.iterrows():
if row['label'] == 0:
texts_right.append(row['startphrase'] + " " + row['ending0'])
texts_wrong.append(row['startphrase'] + " " + row['ending1'])
else:
texts_right.append(row['startphrase'] + " " + row['ending1'])
texts_wrong.append(row['startphrase'] + " " + row['ending0'])
df_results['text_right'] = texts_right
df_results['text_wrong'] = texts_wrong
df_results['label'] = test_dataset['label']
# -------------------------------------------------------------------
def get_model():
return AutoModelForMultipleChoice.from_pretrained(model_checkpoint)
training_args = TrainingArguments(
output_dir=running_output_path, # output directory
evaluation_strategy="steps",
report_to="wandb",
disable_tqdm=True,
seed=42
)
trainer = Trainer(
args=training_args,
tokenizer=tokenizer,
train_dataset=train_dev_dataset['train'],
eval_dataset=train_dev_dataset['test'],
data_collator=DataCollatorForMultipleChoice(tokenizer),
model_init=get_model,
compute_metrics=compute_metrics
)
tune_config = {
"per_device_train_batch_size": tune.grid_search(params['tuning_batch_size']),
"num_train_epochs": tune.grid_search(params['tuning_num_train_epochs']),
"learning_rate": tune.grid_search(params['tuning_learning_rate'])
}
best_trial = trainer.hyperparameter_search(
hp_space=lambda _: tune_config,
backend="ray",
direction='maximize',
n_trials=params['n_trials'],
verbose=1,
resources_per_trial={
"cpu": params['resources_per_trial']['cpu'], # make sure to change your resources accordingly
"gpu": params['resources_per_trial']['gpu']
},
keep_checkpoints_num=0,
local_dir="./ray_results/",
log_to_file=True)
# updating hyperparameters using best trial
for n, v in best_trial.hyperparameters.items():
setattr(training_args, n, v)
print("*** best hyperparameter values ***")
print(training_args)
print("*** best trial ***")
print(best_trial)
for run in params['random_seeds']:
setattr(training_args, 'seed', run)
setattr(training_args, 'do_eval', False)
setattr(training_args, 'evaluation_strategy', 'no')
trainer = Trainer(
args=training_args,
tokenizer=tokenizer,
train_dataset=train_dataset,
data_collator=DataCollatorForMultipleChoice(tokenizer),
model_init=get_model,
compute_metrics=compute_metrics
)
trainer.train()
predictions = trainer.predict(test_dataset)
accuracy = compute_metrics(predictions)
test_results['test_accuracy'].append(accuracy['accuracy'])
predicted = le.inverse_transform(predictions.predictions.argmax(-1))
labels = le.inverse_transform(test_dataset['label'])
df_results['predicted_{}'.format(run)] = predicted
assert accuracy_score(labels, predicted) == accuracy['accuracy']
trainer.save_model('{}/model_seed_{}'.format(running_output_path, run))
# saving prediction results
df_results.to_csv('{}/predictions.csv'.format(running_output_path))
print("=======================")
print("*** results on test ***")
print(test_results)
for metric, values in test_results.items():
print('{}: mean = {}'.format(metric, statistics.mean(values)))
if len(values) > 1: # variance requires at least two data points
print('{}: std = {}'.format(metric, statistics.stdev(values)))