-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFFT.h
225 lines (194 loc) · 6.62 KB
/
FFT.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
/*
* Fast Fourier Transformation/Mel-Frequency
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
*/
#pragma once
#include <cmath>
#include "ExpFilter.h"
class FFT{
private:
float* _hammer=NULL;
uint16_t _num_mel_bands, _num_samples, _sample_rate;
float _min_frequency, _max_frequency, _min_volume_threshold;
float * _y_data_cal;
float** _melmat=NULL;
float hz2mel(float f);
float mel2hz(float m);
void compute_hammer();
void compute_melmat(uint16_t num_mel_bands, float freq_min, float freq_max, uint16_t num_fft_bands, uint16_t sample_rate);
class ExpFilter * _mel_gain, * _mel_smoothing;
public:
FFT(uint16_t samples, uint16_t n_mel_bin, float min_frequency, float max_frequency, uint16_t sample_rate, float min_volume_threshold);
~FFT();
void fft(float * real, float * imag);
void fft(float * real);
void abs(float * real, float * imag);
void hamming(float *real);
void t2mel(float * y_data, float * mel_data);
};
FFT::FFT(uint16_t samples, uint16_t n_mel_bin, float min_frequency, float max_frequency, uint16_t sample_rate, float min_volume_threshold){
_num_samples = samples;
_num_mel_bands = n_mel_bin;
_min_frequency = min_frequency;
_max_frequency = max_frequency;
_sample_rate = sample_rate;
_min_volume_threshold = min_volume_threshold;
compute_hammer();
compute_melmat(_num_mel_bands, _min_frequency, _max_frequency, _num_samples/2, _sample_rate);
_mel_gain = new ExpFilter(1, 0.06, 0.99);
_mel_smoothing = new ExpFilter(_num_mel_bands, 0.5, 0.99);
_y_data_cal = (float*)malloc(_num_samples*sizeof(float));
}
FFT::~FFT(){
delete _mel_gain;
delete _mel_smoothing;
free(_y_data_cal);
if (_melmat){
for(uint16_t i=0; i<_num_mel_bands; i++)
delete []_melmat[i];
delete []_melmat;
}
if(_hammer)
delete [] _hammer;
}
void FFT::compute_hammer(){
_hammer = new float[_num_samples];
for(uint16_t i=0; i<_num_samples; i++)
_hammer[i] = (0.54 - 0.46*cos(2.0*M_PI*i/(_num_samples-1)));
}
void FFT::hamming(float *real){
for(uint16_t i=0; i<0; i++)
real[i] *= _hammer[i];
}
float FFT::hz2mel(float f){
return 2595.0*log10(1.0+f/700.0);
}
float FFT::mel2hz(float m){
return 700.0*(pow(10.0,m/2595.0)-1.0);
}
void FFT::compute_melmat(uint16_t num_mel_bands, float freq_min, float freq_max, uint16_t num_fft_bands, uint16_t sample_rate){
_melmat = new float*[num_mel_bands];
for(uint16_t i=0; i<num_mel_bands; i++)
_melmat[i] = new float[num_fft_bands];
float lowFreqMel = hz2mel(freq_min);
float highFreqMel = hz2mel (freq_max);
float* filterCentreFreq = new float[num_mel_bands+2];
for(uint16_t i=0; i<num_mel_bands+2; i++)
filterCentreFreq[i] = mel2hz(lowFreqMel + (highFreqMel-lowFreqMel)/(num_mel_bands+1)*i);
float* fftBinFreq = new float[num_fft_bands];
for (uint16_t i=0; i<num_fft_bands; i++)
fftBinFreq[i]=(sample_rate/2.0/(num_fft_bands-1)*i);
for (uint16_t filt=1; filt<=num_mel_bands; filt++) {
for (uint16_t bin=0; bin<num_fft_bands; bin++) {
float weight;
if (fftBinFreq[bin] < filterCentreFreq[filt-1])
weight = 0.0;
else if (fftBinFreq[bin] <= filterCentreFreq[filt])
weight = (fftBinFreq[bin] - filterCentreFreq[filt-1]) / (filterCentreFreq[filt] - filterCentreFreq[filt-1]);
else if (fftBinFreq[bin] <= filterCentreFreq[filt+1])
weight = (filterCentreFreq[filt+1] - fftBinFreq[bin]) / (filterCentreFreq[filt+1] - filterCentreFreq[filt]);
else
weight = 0.0;
_melmat[filt-1][bin] = weight;
}
}
delete [] filterCentreFreq;
delete [] fftBinFreq;
}
void FFT::fft(float * real){
float *imag;
imag = new float[_num_samples]();
fft(real, imag);
abs(real, imag);
delete [] imag;
}
void FFT::fft(float * real, float * imag){
uint16_t j = 0;
float tmp;
for (uint16_t i = 0; i < (_num_samples - 1); i++) {
if (i < j) {
tmp = real[i];
real[i] = real[j];
real[j] = tmp;
}
uint16_t k = (_num_samples >> 1);
while (k <= j) {
j -= k;
k >>= 1;
}
j += k;
}
// Compute the POWER
uint8_t power = 0;
while (((_num_samples >> power) & 1) != 1) power++;
// Compute the FFT
float c1 = -1.0;
float c2 = 0.0;
uint16_t l2 = 1;
for (uint8_t l = 0; (l < power); l++) {
uint16_t l1 = l2;
l2 <<= 1;
float u1 = 1.0;
float u2 = 0.0;
for (j = 0; j < l1; j++) {
for (uint16_t i = j; i < _num_samples; i += l2) {
uint16_t i1 = i + l1;
float t1 = u1 * real[i1] - u2 * imag[i1];
float t2 = u1 * imag[i1] + u2 * real[i1];
real[i1] = real[i] - t1;
imag[i1] = imag[i] - t2;
real[i] += t1;
imag[i] += t2;
}
float z = ((u1 * c1) - (u2 * c2));
u2 = ((u1 * c2) + (u2 * c1));
u1 = z;
}
c2 = sqrt((1.0 - c1) / 2.0);
c2 = -c2;
c1 = sqrt((1.0 + c1) / 2.0);
}
}
void FFT::abs(float * real, float * imag){
for(uint16_t i=0; i<_num_samples/2; i++){
real[i] = sqrt(real[i]*real[i]+imag[i]*imag[i]);
}
}
void FFT::t2mel(float * y_data, float * mel_data){
float minData, maxData;
minData = y_data[0];
maxData = y_data[0];
int jj;
for(jj=1; jj<_num_samples; jj++){
if(y_data[jj]<minData) minData=y_data[jj];
if(y_data[jj]>maxData) maxData=y_data[jj];
if(maxData-minData>_min_volume_threshold) break;
}
if(jj==_num_samples){
for(int i=0; i<_num_mel_bands; i++)
mel_data[i] = 0.0;
return;
}
memcpy(_y_data_cal, y_data, sizeof(float)*_num_samples);
hamming(_y_data_cal);
fft(_y_data_cal);
float max_mel;
max_mel = 0.0;
for (int i = 0; i < _num_mel_bands; i++) {
mel_data[i] = 0.0;
for (int j = 0; j < _num_samples/2; j++) {
mel_data[i] += _y_data_cal[j] * _melmat[i][j];
}
mel_data[i] = mel_data[i] * mel_data[i];
max_mel = std::max(mel_data[i],max_mel);
}
_mel_gain->update(&max_mel);
if (max_mel > 0.0)
for (int i = 0; i < _num_mel_bands; i++)
mel_data[i] /= max_mel;
_mel_smoothing->update(mel_data);
}