forked from pharmaverse/rpharma-phriday-workshop
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathadsl.R
298 lines (253 loc) · 8.53 KB
/
adsl.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# Name: ADSL
#
# Label: Subject Level Analysis Dataset
#
#
# If not using posit.cloud - run this script to install packages
# source("exercises/setup.R")
#
# Input: dm, ds, ex, ae, suppdm, rphrama_specs.xlsx
library(admiral)
library(pharmaversesdtm)
library(dplyr)
library(lubridate)
library(stringr)
library(metacore)
library(metatools)
library(xportr)
# ---- Load Specs for Metacore ----
metacore <- spec_to_metacore(
path = "metadata/rpharma_specs.xlsx",
where_sep_sheet = FALSE,
quiet = TRUE
) %>%
select_dataset("ADSL")
# ---- Load User-defined function ----
source("exercises/adams_little_helpers.R")
# ---- Load source datasets ----
# Use e.g. haven::read_sas to read in .sas7bdat, or other suitable functions
# as needed and assign to the variables below.
# For illustration purposes read in sdtm test data
dm <- pharmaversesdtm::dm
ds <- pharmaversesdtm::ds
ex <- pharmaversesdtm::ex
ae <- pharmaversesdtm::ae
vs <- pharmaversesdtm::vs
suppdm <- pharmaversesdtm::suppdm
# When SAS datasets are imported into R using haven::read_sas(), missing
# character values from SAS appear as "" characters in R, instead of appearing
# as NA values. Further details can be obtained via the following link:
# https://pharmaverse.github.io/admiral/articles/admiral.html#handling-of-missing-values
dm <- convert_blanks_to_na(dm)
ds <- convert_blanks_to_na(ds)
ex <- convert_blanks_to_na(ex)
ae <- convert_blanks_to_na(ae)
vs <- convert_blanks_to_na(vs)
suppdm <- convert_blanks_to_na(suppdm)
# Combine Parent and Supp - very handy! ----
dm_suppdm <- combine_supp(dm, suppdm)
# Derivations ----
# impute start and end time of exposure to first and last respectively, do not impute date
ex_ext <- ex %>%
derive_vars_dtm(
dtc = EXSTDTC,
new_vars_prefix = "EXST",
time_imputation = "last",
flag_imputation = "time"
) %>%
derive_vars_dtm(
dtc = EXENDTC,
new_vars_prefix = "EXEN",
time_imputation = "last",
flag_imputation = "time"
)
# Derive treatment start date (TRTSDTM, TRT01P, TRT01A) ----
adsl01 <- dm_suppdm %>%
mutate(TRT01P = ARM, TRT01A = ACTARM) %>%
derive_vars_merged(
dataset_add = ex_ext,
by_vars = exprs(STUDYID, USUBJID),
order = exprs(EXSTDTM, EXSEQ),
new_vars = exprs(TRTSDTM = EXSTDTM, TRTSTMF = EXSTTMF),
filter_add = (EXDOSE > 0 |
(EXDOSE == 0 &
str_detect(EXTRT, "PLACEBO"))) &
!is.na(EXSTDTM),
mode = "first",
)
# View(adsl01 %>% select(USUBJID, starts_with("TRT")))
# Derive treatment end date (TRTEDTM) ----
adsl02 <- adsl01 %>%
derive_vars_merged(
dataset_add = ex_ext,
by_vars = exprs(STUDYID, USUBJID),
order = exprs(EXENDTM, EXSEQ),
new_vars = exprs(TRTEDTM = EXENDTM, TRTETMF = EXENTMF),
filter_add = (EXDOSE > 0 |
(EXDOSE == 0 &
str_detect(EXTRT, "PLACEBO"))) & !is.na(EXENDTM),
mode = "last",
)
# View(adsl02 %>% select(USUBJID, starts_with("TRT")))
# Derive treatment end/start date (TRTSDT/TRTEDT) ----
adsl03 <- adsl02 %>%
derive_vars_dtm_to_dt(
source_vars = exprs(TRTSDTM, TRTEDTM)
)
# View(adsl03 %>% select(USUBJID, starts_with("TRT")))
# Derive treatment start time (TRTSTM) ----
adsl04 <- adsl03 %>%
derive_vars_dtm_to_tm(
source_vars = exprs(TRTSDTM)
)
# View(adsl04 %>% select(USUBJID, starts_with("TRT")))
# Derive treatment duration (TRTDURD) ----
adsl05 <- adsl04 %>%
derive_var_trtdurd(
start_date = TRTSDT,
end_date = TRTEDT
)
# View(adsl05 %>% select(USUBJID, starts_with("TRT")))
# Disposition dates, status ----
# convert character date to numeric date without imputation
ds_ext <- derive_vars_dt(
ds,
dtc = DSSTDTC,
new_vars_prefix = "DSST"
)
# Screen fail date (SCRFDT) ----
adsl06 <- adsl05 %>%
derive_vars_merged(
dataset_add = ds_ext,
by_vars = exprs(STUDYID, USUBJID),
new_vars = exprs(SCRFDT = DSSTDT),
filter_add = DSCAT == "DISPOSITION EVENT" & DSDECOD == "SCREEN FAILURE"
)
# View(adsl06 %>% select(USUBJID, TRT01P, ends_with("DT")))
# End of Study Date (EOSDT) ----
adsl07 <- adsl06 %>%
derive_vars_merged(
dataset_add = ds_ext,
by_vars = exprs(STUDYID, USUBJID),
new_vars = exprs(EOSDT = DSSTDT),
filter_add = DSCAT == "DISPOSITION EVENT" & DSDECOD != "SCREEN FAILURE"
)
# View(adsl07 %>% select(USUBJID, TRT01P, ends_with("DT")))
# End of Study Status (EOSSTT) ----
adsl08 <- adsl07 %>%
derive_vars_merged(
dataset_add = ds_ext,
by_vars = exprs(STUDYID, USUBJID),
new_vars = exprs(EOSSTT = format_eosstt(DSDECOD)),
filter_add = DSCAT == "DISPOSITION EVENT",
missing_values = exprs(EOSSTT = "ONGOING")
)
# View(adsl08 %>% select(USUBJID, TRT01P, ends_with(c("DT", "TT"))))
# Last Retrieval Date (FRVDT) ----
adsl09 <- adsl08 %>%
derive_vars_merged(
dataset_add = ds_ext,
by_vars = exprs(STUDYID, USUBJID),
new_vars = exprs(FRVDT = DSSTDT),
filter_add = DSCAT == "OTHER EVENT" & DSDECOD == "FINAL RETRIEVAL VISIT"
)
# View(adsl09 %>% select(USUBJID, TRT01P, ends_with(c("DT", "TT"))))
# Derive Randomization Date (RANDDT) ----
adsl10 <- adsl09 %>%
derive_vars_merged(
dataset_add = ds_ext,
by_vars = exprs(STUDYID, USUBJID),
new_vars = exprs(RANDDT = DSSTDT),
filter_add = DSDECOD == "RANDOMIZED",
)
# View(adsl10 %>% select(USUBJID, TRT01P, ends_with(c("DT", "TT"))))
# Death date - impute partial date to first day/month (DTHDT) ----
adsl11 <- adsl10 %>%
derive_vars_dt(
new_vars_prefix = "DTH",
dtc = DTHDTC,
highest_imputation = "M",
date_imputation = "first"
)
# Relative Day of Death (DTHADY) ----
adsl12 <- adsl11 %>%
derive_vars_duration(
new_var = DTHADY,
start_date = TRTSDT,
end_date = DTHDT
)
# View(adsl12 %>% select(USUBJID, TRT01P, TRTSDT, DTHDT, DTHADY))
# Elapsed Days from Last Dose to Death (LDDTHELD) ----
adsl13 <- adsl12 %>%
derive_vars_duration(
new_var = LDDTHELD,
start_date = TRTEDT,
end_date = DTHDT,
add_one = FALSE
)
# Cause of Death and Traceability Variables (DTHCAUS, DTHDOM) ----
adsl14 <- adsl13 %>%
derive_vars_extreme_event(
by_vars = exprs(STUDYID, USUBJID),
events = list(
event(
dataset_name = "ae",
condition = AEOUT == "FATAL",
set_values_to = exprs(DTHCAUS = AEDECOD, DTHDOM = DOMAIN),
),
event(
dataset_name = "ds",
condition = DSDECOD == "DEATH" & grepl("DEATH DUE TO", DSTERM),
set_values_to = exprs(DTHCAUS = DSTERM, DTHDOM = DOMAIN),
)
),
source_datasets = list(ae = ae, ds = ds),
tmp_event_nr_var = event_nr,
order = exprs(event_nr),
mode = "first",
new_vars = exprs(DTHCAUS = DTHCAUS, DTHDOM = DTHDOM)
)
# View(adsl14 %>% select(USUBJID, TRT01P, TRTSDT, DTHDT, DTHCAUS, DTHDOM))
# Grouping variables (RACEGR1, AGEGR1, REGION1, DTHCGR1) ----
## Using Format functions are from source("exercises/adams_little_helpers.R") ----
adsl15 <- adsl14 %>%
mutate(
RACEGR1 = format_racegr1(RACE),
AGEGR1 = format_agegr1(AGE),
REGION1 = format_region1(COUNTRY),
DTHCGR1 = format_dthcgr1(DTHDOM, DTHCAUS)
)
# View(adsl15 %>% select(USUBJID, TRT01P, RACEGR1, AGEGR1, REGION1, DTHCGR1))
# Pop Flag variables (RANDFL, ITTFL, SAFFL) ----
## Using assign functions from source("exercises/adams_little_helpers.R") ----
adsl16 <- adsl15 %>%
mutate(
RANDFL = assign_randfl(RANDDT)
) %>%
rename(
ITTFL = ITT,
SAFFL = SAFETY
)
# Numeric Variables are from Spec File ----
## (AGEGR1N, RACEN, RACEGR1N, REGION1N, TRT01PN, TRT01AN)
adsl17 <- adsl16 %>%
create_var_from_codelist(metacore, input_var = AGEGR1, out_var = AGEGR1N) %>%
create_var_from_codelist(metacore, input_var = RACE, out_var = RACEN) %>%
create_var_from_codelist(metacore, input_var = RACEGR1, out_var = RACEGR1N) %>%
create_var_from_codelist(metacore, input_var = REGION1, out_var = REGION1N) %>%
create_var_from_codelist(metacore, input_var = TRT01P, out_var = TRT01PN) %>%
create_var_from_codelist(metacore, input_var = TRT01A, out_var = TRT01AN)
# View(adsl17 %>% select(USUBJID, ends_with("N")))
# Final Preparation ----
## Ordering, Sorting by Key, Labels, Types, Lengths, XPT ----
adsl <- adsl17 %>%
drop_unspec_vars(metacore) %>% # Drop unspecified variables from specs
check_variables(metacore, dataset_name = "ADSL") %>% # Check all variables specified are present and no more
order_cols(metacore) %>% # Orders the columns according to the spec
sort_by_key(metacore) %>% # Sorts the rows by the sort keys
xportr_type(metacore) %>%
xportr_length(metacore) %>%
xportr_label(metacore) %>%
xportr_format(metacore) %>%
xportr_df_label(metacore) %>%
xportr_write(path = "datasets/adsl.xpt", metadata = metacore, domain = "ADSL")