-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexample.cpp
73 lines (62 loc) · 2.34 KB
/
example.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
// good resources
// https://opensearch.org/blog/improving-document-retrieval-with-sparse-semantic-encoders/
// https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-v1
//
// run with
// text-embeddings-router --model-id opensearch-project/opensearch-neural-sparse-encoding-v1 --pooling splade
#include <cstdint>
#include <iostream>
#include <cpr/cpr.h>
#include <nlohmann/json.hpp>
#include <pgvector/pqxx.hpp>
#include <pqxx/pqxx>
using json = nlohmann::json;
std::vector<pgvector::SparseVector> embed(const std::vector<std::string>& inputs) {
std::string url = "http://localhost:3000/embed_sparse";
json data = {
{"inputs", inputs}
};
cpr::Response r = cpr::Post(
cpr::Url{url},
cpr::Body{data.dump()},
cpr::Header{{"Content-Type", "application/json"}}
);
if (r.status_code != 200) {
throw std::runtime_error("Bad status: " + std::to_string(r.status_code));
}
json response = json::parse(r.text);
std::vector<pgvector::SparseVector> embeddings;
for (auto& item : response) {
std::vector<int> indices;
std::vector<float> values;
for (auto& e : item) {
indices.emplace_back(e["index"]);
values.emplace_back(e["value"]);
}
embeddings.emplace_back(pgvector::SparseVector(30522, indices, values));
}
return embeddings;
}
int main() {
pqxx::connection conn("dbname=pgvector_example");
pqxx::nontransaction tx(conn);
tx.exec("CREATE EXTENSION IF NOT EXISTS vector");
tx.exec("DROP TABLE IF EXISTS documents");
tx.exec("CREATE TABLE documents (id bigserial PRIMARY KEY, content text, embedding sparsevec(30522))");
std::vector<std::string> input = {
"The dog is barking",
"The cat is purring",
"The bear is growling"
};
auto embeddings = embed(input);
for (size_t i = 0; i < input.size(); i++) {
tx.exec("INSERT INTO documents (content, embedding) VALUES ($1, $2)", pqxx::params{input[i], embeddings[i]});
}
std::string query = "forest";
auto query_embedding = embed({query})[0];
pqxx::result result = tx.exec("SELECT content FROM documents ORDER BY embedding <#> $1 LIMIT 5", pqxx::params{query_embedding});
for (const auto& row : result) {
std::cout << row[0].as<std::string>() << std::endl;
}
return 0;
}