-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexample.cpp
69 lines (58 loc) · 2.18 KB
/
example.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#include <iostream>
#include <cpr/cpr.h>
#include <nlohmann/json.hpp>
#include <pgvector/pqxx.hpp>
#include <pqxx/pqxx>
using json = nlohmann::json;
// https://platform.openai.com/docs/guides/embeddings/how-to-get-embeddings
// input can be an array with 2048 elements
std::vector<std::vector<float>> embed(const std::vector<std::string>& input, char *api_key) {
std::string url = "https://api.openai.com/v1/embeddings";
json data = {
{"input", input},
{"model", "text-embedding-3-small"}
};
cpr::Response r = cpr::Post(
cpr::Url{url},
cpr::Body{data.dump()},
cpr::Bearer{api_key},
cpr::Header{{"Content-Type", "application/json"}}
);
if (r.status_code != 200) {
throw std::runtime_error("Bad status: " + std::to_string(r.status_code));
}
json response = json::parse(r.text);
std::vector<std::vector<float>> embeddings;
for (auto& v: response["data"]) {
embeddings.emplace_back(v["embedding"]);
}
return embeddings;
}
int main() {
char *api_key = std::getenv("OPENAI_API_KEY");
if (!api_key) {
std::cout << "Set OPENAI_API_KEY" << std::endl;
return 1;
}
pqxx::connection conn("dbname=pgvector_example");
pqxx::nontransaction tx(conn);
tx.exec("CREATE EXTENSION IF NOT EXISTS vector");
tx.exec("DROP TABLE IF EXISTS documents");
tx.exec("CREATE TABLE documents (id bigserial PRIMARY KEY, content text, embedding vector(1536))");
std::vector<std::string> input = {
"The dog is barking",
"The cat is purring",
"The bear is growling"
};
auto embeddings = embed(input, api_key);
for (size_t i = 0; i < input.size(); i++) {
tx.exec("INSERT INTO documents (content, embedding) VALUES ($1, $2)", pqxx::params{input[i], pgvector::Vector(embeddings[i])});
}
std::string query = "forest";
auto query_embedding = embed({query}, api_key)[0];
pqxx::result result = tx.exec("SELECT content FROM documents ORDER BY embedding <=> $1 LIMIT 5", pqxx::params{pgvector::Vector(query_embedding)});
for (const auto& row : result) {
std::cout << row[0].as<std::string>() << std::endl;
}
return 0;
}