-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmargin_visualization.py
99 lines (81 loc) · 3.17 KB
/
margin_visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_circles,make_classification
from sklearn.neural_network import MLPClassifier
from sklearn.pipeline import make_pipeline
h = .005 # step size in the mesh
classifiers = []
names = []
classifiers.append(make_pipeline(
StandardScaler(),
MLPClassifier(
solver='lbfgs', alpha=0.3, random_state=1, max_iter=2000,
early_stopping=True, hidden_layer_sizes=[100, 100],
)
))
names.append("Narrow Margin")
classifiers.append(make_pipeline(
StandardScaler(),
MLPClassifier(
solver='lbfgs', alpha=1, random_state=1, max_iter=2000,
early_stopping=True, hidden_layer_sizes=[100, 100],
)
))
names.append("Large Margin")
# # creating circles data set
# X, y = make_circles(n_samples=200, noise=0.2, factor=0.5)
X, y = make_classification(n_features=2, n_samples=100, n_redundant=0, n_informative=2,
random_state=1, n_clusters_per_class=1)
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
# split into training and test part
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4)
figure = plt.figure(figsize=(6,3))
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
# just plot the dataset first
cm = plt.cm.RdBu
cm_bright = ListedColormap(['#a079b0', '#72bb76'])
# iterate over classifiers
i = 1
for name, clf in zip(names, classifiers):
ax = plt.subplot(1, 2, i)
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max] x [y_min, y_max].
if hasattr(clf, "decision_function"):
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
else:
Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]
# Put the result into a color plot
Z = Z.reshape(xx.shape)
ax.contourf(xx, yy, Z, cmap=cm, alpha=1.0)
# Plotting training data point in class 0
class_0 = ax.scatter(X[np.where(y==0)[0], 0], X[np.where(y==0)[0], 1], c='#FF0000',
edgecolors='white', s=20, alpha=1.0, label='class 0')
# Plotting training data point in class 1
class_1 = ax.scatter(X[np.where(y==1)[0], 0], X[np.where(y==1)[0], 1], c='#0000FF',
edgecolors='white', s=20, alpha=1.0, label='class 1')
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
name_score = name + ' | Accuracy: ' + str(np.round(score,2))
ax.set_title(name_score)
ax.legend((class_0, class_1),
('class 0', 'class 1'),
scatterpoints=1,
loc='upper left',
ncol=1,
fontsize=10)
i+=1
figure.subplots_adjust(left=.02, right=0.98)
plt.show()
figure.savefig('margin_visualization.pdf', bbox_inches = 'tight')
plt.close()