-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathsill.m
94 lines (82 loc) · 2.99 KB
/
sill.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
% function [ipplat, ipplon] = sill(az, el, stnlat, stnlon, stnht, alt_H_iono) returns the
% sub-ionospheric latitude and longitude, in degrees, of the IPP assuming
% a fixed shell height, given vectors 0<= az<= 2pi and el in radians,
% vectors stnlat and stnlon in degrees, and stnht and alt_H_iono in m.
%
% Adapted from the sill.pro IDL function supplied by Pat Doherty.
% Seebany Datta-Barua
% 5 May 2004
% 10 Aug 2006 Making alt_H_iono mandatory for use with 1300 km iono end ht.
% 23 Aug 2006 Adding input stnht for use with space-based GPS.
% 3 Sep 2006 Issues with dlon being imag because of rounding error acos > 1.
% 8 Dec 2006 acos > 1 means there's no solution, by law of sines. Return
% nans.
% 22 Oct 2007 Testing Hiro's derivation by rotations.
function [ipplat, ipplon] = sill(az, el, stnlat, stnlon, stnht, alt_H_iono)
gpsconst;
% if nargin == 5
H_iono = alt_H_iono;
% end
ipplat = zeros(length(az), 1);
ipplon = zeros(length(az), 1);
deg2rad = pi / 180;
rad2deg = 180 / pi;
if size(stnlat, 1) == 1
stnlat = ones(size(az)) * stnlat;
stnlon = ones(size(az)) * stnlon;
stnht = ones(size(az)) * stnht;
end
stnlat = deg2rad * stnlat;
stnlon = deg2rad * stnlon;
% Radius of earth at station
Re = R_e / 1e3 * (.99832 + .00168 * cos(2*stnlat));
% In GPS textbook, chi = xi'.
% If (Re + stnht/1e3).* cos(el) > (Re+H_iono/1e3) there is no triangle for
% the law of sines to work. Replace with nans.
chi = asin(cos(el).*(Re + stnht / 1e3)./(Re + H_iono / 1e3));
rows = find((Re + stnht / 1e3).*cos(el) > (Re + H_iono / 1e3));
chi(rows) = nan;
% A is earth-centered angle in rad
A = pi / 2 - chi - el;
ipplat = asin(sin(stnlat).*cos(A)+cos(stnlat).*sin(A).*cos(az));
% Rounding errors make acos imaginary. Force to be real.
% Changed the rounding error to tolerate a higher value than 1e-15. SDB
% 130903.
if max((cos(A) - sin(ipplat) .* sin(stnlat))./(cos(ipplat) .* cos(stnlat))) - 1 > 1e-14
ipplat = nan(size(az));
ipplon = nan(size(az));
warning('sill.m line 48: acos > 1 means no solution. Returning nans.')
return
else
dlon = acos((cos(A) - sin(ipplat) .* sin(stnlat))./(cos(ipplat) .* cos(stnlat)));
rows = find(imag(dlon));
dlon(rows) = 0;
end
clear rows
rows = find(az <= pi);
if ~isempty(rows)
% rows = find(dlon);
ipplon(rows) = stnlon(rows) + dlon(rows);
end
rows = find(az > pi);
if ~isempty(rows)
% keyboard
ipplon(rows) = stnlon(rows) - dlon(rows);
end
ipplat = rad2deg * ipplat;
ipplon = rad2deg * ipplon;
% % Alternate method of getting ipplon:
% R1 = [1 0 0; 0 cos(A) sin(A); 0 -sin(A) cos(A)];
% R2 = [cos(az) sin(az) 0; -sin(az) cos(az) 0; 0 0 1];
% R3 = [1 0 0; 0 cos(stnlat) sin(stnlat); 0 -sin(stnlat) cos(stnlat)];
% R = R3*R2*R1;
% xyz = R*[0;0;1];
% ipplat2 = asin(xyz(2))*180/pi
% dlon2 = atan2(xyz(1),xyz(3));
% ipplon2 = (dlon2+stnlon)*180/pi
%
% % Test the rotation back to xyz frame.
% R4 = [cos(-stnlon) 0 -sin(-stnlon); 0 1 0; sin(-stnlon) 0 cos(-stnlon)];
% xyz = R4*R*[0;0;1];
% ipplat3 = asin(xyz(2))*180/pi
% ipplon3 = atan2(xyz(1),xyz(3))*180/pi