-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathL6Q17.py
333 lines (281 loc) · 9.36 KB
/
L6Q17.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# -----------
# User Instructions
#
# Write a function, doit, that takes as its input an
# initial robot position, move1, and move2. This
# function should compute the Omega and Xi matrices
# discussed in lecture and should RETURN the mu vector
# (which is the product of Omega.inverse() and Xi).
#
# Please enter your code at the bottom.
from math import *
# ===============================================================
#
# SLAM in a rectolinear world (we avoid non-linearities)
#
#
# ===============================================================
# ------------------------------------------------
#
# this is the matrix class
# we use it because it makes it easier to collect constraints in GraphSLAM
# and to calculate solutions (albeit inefficiently)
#
class matrix:
# implements basic operations of a matrix class
# ------------
#
# initialization - can be called with an initial matrix
#
def __init__(self, value=[[]]):
self.value = value
self.dimx = len(value)
self.dimy = len(value[0])
if value == [[]]:
self.dimx = 0
# ------------
#
# makes matrix of a certain size and sets each element to zero
#
def zero(self, dimx, dimy=0):
if dimy == 0:
dimy = dimx
# check if valid dimensions
if dimx < 1 or dimy < 1:
raise ValueError, "Invalid size of matrix"
else:
self.dimx = dimx
self.dimy = dimy
self.value = [[0.0 for row in range(dimy)] for col in range(dimx)]
# ------------
#
# makes matrix of a certain (square) size and turns matrix into identity matrix
#
def identity(self, dim):
# check if valid dimension
if dim < 1:
raise ValueError, "Invalid size of matrix"
else:
self.dimx = dim
self.dimy = dim
self.value = [[0.0 for row in range(dim)] for col in range(dim)]
for i in range(dim):
self.value[i][i] = 1.0
# ------------
#
# prints out values of matrix
#
def show(self, txt=''):
for i in range(len(self.value)):
print txt + '[' + ', '.join('%.3f' % x for x in self.value[i]) + ']'
print ' '
# ------------
#
# defines elmement-wise matrix addition. Both matrices must be of equal dimensions
#
def __add__(self, other):
# check if correct dimensions
if self.dimx != other.dimx or self.dimx != other.dimx:
raise ValueError, "Matrices must be of equal dimension to add"
else:
# add if correct dimensions
res = matrix()
res.zero(self.dimx, self.dimy)
for i in range(self.dimx):
for j in range(self.dimy):
res.value[i][j] = self.value[i][j] + other.value[i][j]
return res
# ------------
#
# defines elmement-wise matrix subtraction. Both matrices must be of equal dimensions
#
def __sub__(self, other):
# check if correct dimensions
if self.dimx != other.dimx or self.dimx != other.dimx:
raise ValueError, "Matrices must be of equal dimension to subtract"
else:
# subtract if correct dimensions
res = matrix()
res.zero(self.dimx, self.dimy)
for i in range(self.dimx):
for j in range(self.dimy):
res.value[i][j] = self.value[i][j] - other.value[i][j]
return res
# ------------
#
# defines multiplication. Both matrices must be of fitting dimensions
#
def __mul__(self, other):
# check if correct dimensions
if self.dimy != other.dimx:
raise ValueError, "Matrices must be m*n and n*p to multiply"
else:
# multiply if correct dimensions
res = matrix()
res.zero(self.dimx, other.dimy)
for i in range(self.dimx):
for j in range(other.dimy):
for k in range(self.dimy):
res.value[i][j] += self.value[i][k] * other.value[k][j]
return res
# ------------
#
# returns a matrix transpose
#
def transpose(self):
# compute transpose
res = matrix()
res.zero(self.dimy, self.dimx)
for i in range(self.dimx):
for j in range(self.dimy):
res.value[j][i] = self.value[i][j]
return res
# ------------
#
# creates a new matrix from the existing matrix elements.
#
# Example:
# l = matrix([[ 1, 2, 3, 4, 5],
# [ 6, 7, 8, 9, 10],
# [11, 12, 13, 14, 15]])
#
# l.take([0, 2], [0, 2, 3])
#
# results in:
#
# [[1, 3, 4],
# [11, 13, 14]]
#
#
# take is used to remove rows and columns from existing matrices
# list1/list2 define a sequence of rows/columns that shall be taken
# is no list2 is provided, then list2 is set to list1 (good for symmetric matrices)
#
def take(self, list1, list2=[]):
if list2 == []:
list2 = list1
if len(list1) > self.dimx or len(list2) > self.dimy:
raise ValueError, "list invalid in take()"
res = matrix()
res.zero(len(list1), len(list2))
for i in range(len(list1)):
for j in range(len(list2)):
res.value[i][j] = self.value[list1[i]][list2[j]]
return res
# ------------
#
# creates a new matrix from the existing matrix elements.
#
# Example:
# l = matrix([[1, 2, 3],
# [4, 5, 6]])
#
# l.expand(3, 5, [0, 2], [0, 2, 3])
#
# results in:
#
# [[1, 0, 2, 3, 0],
# [0, 0, 0, 0, 0],
# [4, 0, 5, 6, 0]]
#
# expand is used to introduce new rows and columns into an existing matrix
# list1/list2 are the new indexes of row/columns in which the matrix
# elements are being mapped. Elements for rows and columns
# that are not listed in list1/list2
# will be initialized by 0.0.
#
def expand(self, dimx, dimy, list1, list2=[]):
if list2 == []:
list2 = list1
if len(list1) > self.dimx or len(list2) > self.dimy:
raise ValueError, "list invalid in expand()"
res = matrix()
res.zero(dimx, dimy)
for i in range(len(list1)):
for j in range(len(list2)):
res.value[list1[i]][list2[j]] = self.value[i][j]
return res
# ------------
#
# Computes the upper triangular Cholesky factorization of
# a positive definite matrix.
# This code is based on http://adorio-research.org/wordpress/?p=4560
def Cholesky(self, ztol=1.0e-5):
res = matrix()
res.zero(self.dimx, self.dimx)
for i in range(self.dimx):
S = sum([(res.value[k][i]) ** 2 for k in range(i)])
d = self.value[i][i] - S
if abs(d) < ztol:
res.value[i][i] = 0.0
else:
if d < 0.0:
raise ValueError, "Matrix not positive-definite"
res.value[i][i] = sqrt(d)
for j in range(i + 1, self.dimx):
S = sum([res.value[k][i] * res.value[k][j] for k in range(i)])
if abs(S) < ztol:
S = 0.0
res.value[i][j] = (self.value[i][j] - S) / res.value[i][i]
return res
# ------------
#
# Computes inverse of matrix given its Cholesky upper Triangular
# decomposition of matrix.
# This code is based on http://adorio-research.org/wordpress/?p=4560
def CholeskyInverse(self):
res = matrix()
res.zero(self.dimx, self.dimx)
# Backward step for inverse.
for j in reversed(range(self.dimx)):
tjj = self.value[j][j]
S = sum([self.value[j][k] * res.value[j][k] for k in range(j + 1, self.dimx)])
res.value[j][j] = 1.0 / tjj ** 2 - S / tjj
for i in reversed(range(j)):
res.value[j][i] = res.value[i][j] = \
-sum([self.value[i][k] * res.value[k][j] for k in \
range(i + 1, self.dimx)]) / self.value[i][i]
return res
# ------------
#
# comutes and returns the inverse of a square matrix
#
def inverse(self):
aux = self.Cholesky()
res = aux.CholeskyInverse()
return res
# ------------
#
# prints matrix (needs work!)
#
def __repr__(self):
return repr(self.value)
# ######################################################################
# ######################################################################
# ######################################################################
"""
For the following example, you would call doit(-3, 5, 3):
3 robot positions
initially: -3
moves by 5
moves by 3
which should return a mu of:
[[-3.0],
[2.0],
[5.0]]
"""
def doit(initial_pos, move1, move2):
#
#
# Add your code here.
#
#
omega = matrix([[1, 0, 0], [0, 0, 0], [0, 0, 0]])
xi = matrix([[initial_pos], [0], [0]])
omega += matrix([[1, -1, 0], [-1, 1, 0], [0, 0, 0]])
xi += matrix([[-move1], [move1], [0]])
omega += matrix([[0, 0, 0], [0, 1, -1], [0, -1, 1]])
xi += matrix([[0], [-move2], [move2]])
mu = omega.inverse() * xi
return mu
print doit(-3, 5, 3)