-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtschebyscheff.tex
190 lines (188 loc) · 5.73 KB
/
tschebyscheff.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
%
% Copyright © 2015 Peeter Joot. All Rights Reserved.
% Licenced as described in the file LICENSE under the root directory of this GIT repository.
%
%\input{../blogpost.tex}
%\renewcommand{\basename}{tschebyscheff}
%\renewcommand{\dirname}{notes/ece1229/}
%%\newcommand{\dateintitle}{}
%%\newcommand{\keywords}{}
%
%\input{../peeter_prologue_print2.tex}
%
%\usepackage{peeters_layout_exercise}
%\usepackage{macros_qed}
%
%\beginArtNoToc
%
%\generatetitle{Chebyscheff polynomials}
\section{Chebyscheff polynomials.}
\index{Chebyscheff polynomial}
\index{antenna array}
%\index{Tschebyscheff polynomial}
%\label{chap:tschebyscheff}
In ancient times (i.e. 2nd year undergrad) I recall being very impressed with Chebyscheff polynomials for designing lowpass filters. I'd used Chebyscheff filters for the hardware we used for a speech recognition system our group built in the design lab. One of the benefits of these polynomials is that the oscillation in the \( \Abs{x} < 1 \) interval is strictly bounded. This same property, as well as the unbounded nature outside of the \( [-1,1] \) interval turns out to have applications to antenna array design.
The Chebyscheff polynomials are defined by
%
\begin{subequations}
\label{eqn:chebyscheff:20}
\begin{equation}\label{eqn:chebyscheff:40}
T_m(x) = \cos\lr{ m \cos^{-1} x }, \quad \Abs{x} < 1
\end{equation}
\begin{equation}\label{eqn:chebyscheff:60}
T_m(x) = \cosh\lr{ m \cosh^{-1} x }, \quad \Abs{x} > 1.
\end{equation}
\end{subequations}
%
\paragraph{Range restrictions and hyperbolic form.}
%
Prof. Eleftheriades's notes made a point to point out the definition in the \( \Abs{x} > 1 \) interval, but that can also be viewed as a consequence instead of a definition if the range restriction is removed. For example, suppose \( x = 7 \), and let
%
\begin{equation}\label{eqn:chebyscheff:160}
\cos^{-1} 7 = \theta,
\end{equation}
%
so
\begin{equation}\label{eqn:chebyscheff:180}
\begin{aligned}
7
&= \cos\theta
\\ &= \frac{e^{j\theta} + e^{-j\theta}}{2}
\\ &= \cosh(\pm j\theta),
\end{aligned}
\end{equation}
%
or
%
\begin{equation}\label{eqn:chebyscheff:200}
\mp j \cosh^{-1} 7 = \theta.
\end{equation}
%
\begin{equation}\label{eqn:chebyscheff:220}
\begin{aligned}
T_m(7)
&= \cos( \mp m j \cosh^{-1} 7 )
\\ &= \cosh( m \cosh^{-1} 7 ).
\end{aligned}
\end{equation}
%
The same argument clearly applies to any other value outside of the \( \Abs{x} < 1 \) range, so without any restrictions, these polynomials can be defined as just
%
%\begin{equation}\label{eqn:chebyscheff:260}
\boxedEquation{eqn:chebyscheff:260}{
T_m(x) = \cos\lr{ m \cos^{-1} x }.
}
%\end{equation}
%
\paragraph{Polynomial nature.}
%
\Cref{eqn:chebyscheff:260} does not obviously look like a polynomial. Let's proceed to verify the polynomial nature for the first couple values of \( m \).
%
\begin{itemize}
\item \( m = 0 \).
%
\begin{equation}\label{eqn:chebyscheff:280}
\begin{aligned}
T_0(x)
&= \cos( 0 \cos^{-1} x )
\\ &= \cos( 0 )
\\ &= 1.
\end{aligned}
\end{equation}
%
\item \( m = 1 \).
%
\begin{equation}\label{eqn:chebyscheff:300}
\begin{aligned}
T_1(x)
&= \cos( 1 \cos^{-1} x )
\\ &= x.
\end{aligned}
\end{equation}
%
\item \( m = 2 \).
%
\begin{equation}\label{eqn:chebyscheff:320}
\begin{aligned}
T_2(x)
&= \cos( 2 \cos^{-1} x )
\\ &= 2 \cos^2 \cos^{-1}(x) - 1
\\ &= 2 x^2 - 1.
\end{aligned}
\end{equation}
\end{itemize}
%
To examine the general case
%
\begin{equation}\label{eqn:chebyscheff:340}
\begin{aligned}
T_m(x)
&= \cos( m \cos^{-1} x )
\\ &= \Real e^{ j m \cos^{-1} x }
\\ &= \Real \lr{ e^{ j\cos^{-1} x } }^m
\\ &= \Real \lr{ \cos\cos^{-1} x + j \sin\cos^{-1} x }^m
\\ &= \Real \lr{ x + j \sqrt{1 - x^2} }^m
\\ &=
\Real \Biglr{
x^m
+ \binom{ m}{1} j x^{m-1} \lr{1 - x^2}^{1/2}
- \binom{ m}{2} x^{m-2} \lr{1 - x^2}^{2/2} \\
&\quad
- \binom{ m}{3} j x^{m-3} \lr{1 - x^2}^{3/2}
+ \binom{ m}{4} x^{m-4} \lr{1 - x^2}^{4/2}
+ \cdots
}
\\ &=
x^m
- \binom{ m}{2} x^{m-2} \lr{1 - x^2}
+ \binom{ m}{4} x^{m-4} \lr{1 - x^2}^2
- \cdots
\end{aligned}
\end{equation}
%
This expansion was a bit cavalier with the signs of the \( \sin\cos^{-1} x = \sqrt{1 - x^2} \) terms, since the negative sign should be picked for the root when \( x \in [-1,0] \). However, that doesn't matter in the end since the real part operation selects only powers of two of this root.
The final result of the expansion above can be written
%
\boxedEquation{eqn:chebyscheff:360}{
T_m(x) = \sum_{k = 0}^{\largestIntLessThan{m/2}} \binom{m}{2 k} (-1)^k x^{m - 2 k} \lr{1 - x^2}^k.
}
%
This clearly shows the polynomial nature of these functions, and is also perfectly well defined for any value of \( x \). The even and odd alternation with \( m \) is also clear in this explicit expansion.
%
\paragraph{Some plots.}
%
The first couple polynomials are plotted in \cref{fig:Chebychev:ChebychevFig1}.
%
\mathImageFigure{../figures/ece1229-antenna/ChebychevFig1}{A couple Cheybshev plots.}{fig:Chebychev:ChebychevFig1}{0.3}{chebychevPlots.nb}
%
\paragraph{Properties.}
\index{Cheybshev polynomials!products}
%
In \citep{abramowitz1964handbook} a few properties can be found for these polynomials
%
\begin{subequations}
\label{eqn:chebyscheff:380}
\begin{equation}\label{eqn:chebyscheff:100}
T_m(x) = 2 x T_{m-1} - T_{m-2},
\end{equation}
\begin{equation}\label{eqn:chebyscheff:420}
0 = \lr{ 1 - x^2 } \frac{d T_m(x)}{dx} + m x T_m(x) - m T_{m-1}(x),
\end{equation}
\begin{equation}\label{eqn:chebyscheff:400}
0 = \lr{ 1 - x^2 } \frac{d^2 T_m(x)}{dx^2} - x \frac{dT_m(x)}{dx} + m^2 T_{m}(x),
\end{equation}
\begin{equation}\label{eqn:chebyscheff:440}
\begin{aligned}
\int_{-1}^1 \inv{ \sqrt{1 - x^2} } T_m(x) T_n(x) dx &=
\left\{
\begin{array}{l l}
0 & \quad \mbox{if \( m \ne n \) } \\
\pi & \quad \mbox{if \( m = n = 0 \) } \\
\pi/2 & \quad \mbox{if \( m = n, m \ne 0 \).}
\end{array}
\right.
\end{aligned}
\end{equation}
\end{subequations}
%
%\EndArticle