-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgaMagneticSourcesToTensorToVector.tex
338 lines (338 loc) · 11.1 KB
/
gaMagneticSourcesToTensorToVector.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
%
% Copyright © 2015 Peeter Joot. All Rights Reserved.
% Licenced as described in the file LICENSE under the root directory of this GIT repository.
%
%\input{../blogpost.tex}
%\renewcommand{\basename}{gaMagneticSourcesToTensorToVector}
%\renewcommand{\dirname}{notes/ece1229/}
%%\newcommand{\dateintitle}{}
%%\newcommand{\keywords}{}
%
%\input{../peeter_prologue_print2.tex}
%
%\usepackage{macros_bm}
%
%\beginArtNoToc
%
%\generatetitle{Maxwell's equations in tensor form with magnetic sources}
%\chapter{Maxwell's equations in tensor form with magnetic sources}
\index{Maxwell's equations!tensor}
\index{magnetic source}
%\label{chap:gaMagneticSourcesToTensorToVector}
%\section{Motivation}
%\section{Guts}
%
Following the principle that one should always relate new formalisms to things previously learned, I'd like to know what Maxwell's equations look like in tensor form when magnetic sources are included. As a verification that the previous Geometric Algebra form of Maxwell's equation that includes magnetic sources is correct, I'll start with the GA form of Maxwell's equation, find the tensor form, and then verify that the vector form of Maxwell's equations can be recovered from the tensor form.
%
\paragraph{Tensor form.}
\index{tensor form}
%
With four-vector potential \( A \), and \textAndIndex{bivector} \textAndIndex{electromagnetic field} \( F = \grad \wedge A \), the GA form of Maxwell's equation is
%
\begin{equation}\label{eqn:gaMagneticSourcesToTensorToVector:20}
\grad F = \frac{J}{\epsilon_0 c} + M I.
\end{equation}
%
The left hand side can be unpacked into vector and trivector terms \index{trivector} \( \grad F = \grad \cdot F + \grad \wedge F \) \index{wedge product}, which happens to also separate the sources nicely as a side effect
%
\begin{subequations}
\label{eqn:gaMagneticSourcesToTensorToVector:40}
\begin{equation}\label{eqn:gaMagneticSourcesToTensorToVector:60}
\grad \cdot F = \frac{J}{\epsilon_0 c}
\end{equation}
\begin{equation}\label{eqn:gaMagneticSourcesToTensorToVector:80}
\grad \wedge F = M I.
\end{equation}
\end{subequations}
%
The electric source equation can be unpacked into tensor form by dotting with the four vector basis vectors. With the usual definition \( F^{\alpha \beta} = \partial^\alpha A^\beta - \partial^\beta A^\alpha \), that is
%
\begin{equation}\label{eqn:gaMagneticSourcesToTensorToVector:100}
\begin{aligned}
\gamma^\mu \cdot \lr{ \grad \cdot F }
&=
\gamma^\mu \cdot \lr{ \grad \cdot \lr{ \grad \wedge A } }
\\ &=
\gamma^\mu \cdot \lr{ \gamma^\nu \partial_\nu \cdot
\lr{ \gamma_\alpha \partial^\alpha \wedge \gamma_\beta A^\beta } }
\\ &=
\gamma^\mu \cdot \lr{ \gamma^\nu \cdot \lr{ \gamma_\alpha \wedge \gamma_\beta } } \partial_\nu \partial^\alpha A^\beta
\\ &=
\inv{2}
\gamma^\mu \cdot \lr{ \gamma^\nu \cdot \lr{ \gamma_\alpha \wedge \gamma_\beta } }
\partial_\nu F^{\alpha \beta}
\\ &=
\inv{2} \delta^{\nu \mu}_{[\alpha \beta]} \partial_\nu F^{\alpha \beta}
\\ &=
\inv{2} \partial_\nu F^{\nu \mu}
-
\inv{2} \partial_\nu F^{\mu \nu}
\\ &=
\partial_\nu F^{\nu \mu}.
\end{aligned}
\end{equation}
%
So the first tensor equation is
%
\boxedEquation{eqn:gaMagneticSourcesToTensorToVector:120}{
\partial_\nu F^{\nu \mu} = \inv{c \epsilon_0} J^\mu.
}
%
To unpack the magnetic source portion of Maxwell's equation, put it first into dual form, so that it has four vectors on each side
%
\begin{equation}\label{eqn:gaMagneticSourcesToTensorToVector:140}
\begin{aligned}
M
&= - \lr{ \grad \wedge F} I
\\ &= -\frac{1}{2} \lr{ \grad F + F \grad } I
\\ &= -\frac{1}{2} \lr{ \grad F I - F I \grad }
\\ &= - \grad \cdot \lr{ F I }.
\end{aligned}
\end{equation}
%
Dotting with \( \gamma^\mu \) gives
%
\begin{equation}\label{eqn:gaMagneticSourcesToTensorToVector:160}
\begin{aligned}
M^\mu
&= \gamma^\mu \cdot \lr{ \grad \cdot \lr{ - F I } }
\\ &= \gamma^\mu \cdot \lr{ \gamma^\nu \partial_\nu \cdot \lr{ -\frac{1}{2} \gamma^\alpha \wedge \gamma^\beta I F_{\alpha \beta} } }
\\ &= -\inv{2}
\gpgradezero{
\gamma^\mu \cdot \lr{ \gamma^\nu \cdot \lr{ \gamma^\alpha \wedge \gamma^\beta I } }
}
\partial_\nu F_{\alpha \beta}.
\end{aligned}
\end{equation}
%
This scalar grade selection is a complete \textAndIndex{antisymmetrization} of the indexes
%
\begin{equation}\label{eqn:gaMagneticSourcesToTensorToVector:180}
\begin{aligned}
\gpgradezero{
\gamma^\mu \cdot \lr{ \gamma^\nu \cdot \lr{ \gamma^\alpha \wedge \gamma^\beta I } }
}
&=
\gpgradezero{
\gamma^\mu \cdot \lr{ \gamma^\nu \cdot \lr{
\gamma^\alpha \gamma^\beta
\gamma_0 \gamma_1 \gamma_2 \gamma_3
} }
}
\\ &=
\gpgradezero{
\gamma_0 \gamma_1 \gamma_2 \gamma_3
\gamma^\mu \gamma^\nu \gamma^\alpha \gamma^\beta
}
\\ &=
\delta^{\mu \nu \alpha \beta}_{3 2 1 0}
\\ &=
\epsilon^{\mu \nu \alpha \beta },
\end{aligned}
\end{equation}
%
so the magnetic source portion of Maxwell's equation, in tensor form, is
%
\boxedEquation{eqn:gaMagneticSourcesToTensorToVector:200}{
\inv{2} \epsilon^{\nu \alpha \beta \mu}
\partial_\nu F_{\alpha \beta}
=
M^\mu.
}
%
\paragraph{Relating the tensor to the fields.}
%
The electromagnetic field has been identified with the electric and magnetic fields by
%
\begin{equation}\label{eqn:gaMagneticSourcesToTensorToVector:220}
F = \bcE + c \mu_0 \bcH I ,
\end{equation}
%
or in coordinates
%
\begin{equation}\label{eqn:gaMagneticSourcesToTensorToVector:240}
\inv{2} \gamma_\mu \wedge \gamma_\nu F^{\mu \nu}
= E^a \gamma_a \gamma_0 + c \mu_0 H^a \gamma_a \gamma_0 I.
\end{equation}
%
By forming the \textAndIndex{dot product} sequence \( F^{\alpha \beta} = \gamma^\beta \cdot \lr{ \gamma^\alpha \cdot F } \), the electric and magnetic field components can be related to the tensor components. The \textAndIndex{electric field} components follow by inspection and are
%
\begin{equation}\label{eqn:gaMagneticSourcesToTensorToVector:260}
\begin{aligned}
E^b &= \gamma^0 \cdot \lr{ \gamma^b \cdot F } \\ &= F^{b 0}.
\end{aligned}
\end{equation}
%
The \textAndIndex{magnetic field} relation to the tensor components follow from
%
\begin{equation}\label{eqn:gaMagneticSourcesToTensorToVector:280}
\begin{aligned}
F^{r s}
&= F_{r s}
\\ &= \gamma_s \cdot \lr{ \gamma_r \cdot \lr{ c \mu_0 H^a \gamma_a \gamma_0 I } }
\\ &=
c \mu_0 H^a \gpgradezero{ \gamma_s \gamma_r \gamma_a \gamma_0 I }
\\ &=
c \mu_0 H^a \gpgradezero{ -\cancel{\gamma^0} \gamma^1 \gamma^2 \gamma^3 \gamma_s \gamma_r \gamma_a \cancel{\gamma_0} }
\\ &=
- c \mu_0 H^a \delta^{[3 2 1]}_{s r a}
\\ &=
c \mu_0 H^a \epsilon_{ s r a }.
\end{aligned}
\end{equation}
%
Expanding this for each pair of spacelike coordinates gives
%
\begin{subequations}
\label{eqn:gaMagneticSourcesToTensorToVector:300}
\begin{equation}\label{eqn:gaMagneticSourcesToTensorToVector:320}
F^{1 2} = c \mu_0 H^3 \epsilon_{ 2 1 3 } = - c \mu_0 H^3
\end{equation}
\begin{equation}\label{eqn:gaMagneticSourcesToTensorToVector:340}
F^{2 3} = c \mu_0 H^1 \epsilon_{ 3 2 1 } = - c \mu_0 H^1
\end{equation}
\begin{equation}\label{eqn:gaMagneticSourcesToTensorToVector:360}
F^{3 1} = c \mu_0 H^2 \epsilon_{ 1 3 2 } = - c \mu_0 H^2,
\end{equation}
\end{subequations}
%
or
%
%\begin{equation}\label{eqn:gaMagneticSourcesToTensorToVector:380}
%\boxed{
\boxedEquation{eqn:gaMagneticSourcesToTensorToVector:380}{
\begin{aligned}
E^1 &= F^{1 0} \\
E^2 &= F^{2 0} \\
E^3 &= F^{3 0} \\
H^1 &= -\inv{c \mu_0} F^{2 3} \\
H^2 &= -\inv{c \mu_0} F^{3 1} \\
H^3 &= -\inv{c \mu_0} F^{1 2}.
\end{aligned}
}
%\end{equation}
%
\paragraph{Recover the vector equations from the tensor equations.}
%
Starting with the non-dual Maxwell tensor equation, expanding the timelike index gives
%
\begin{equation}\label{eqn:gaMagneticSourcesToTensorToVector:480}
\begin{aligned}
\inv{c \epsilon_0} J^0
&= \inv{\epsilon_0} \rho
\\ &=
\partial_\nu F^{\nu 0}
\\ &=
\partial_1 F^{1 0}
+\partial_2 F^{2 0}
+\partial_3 F^{3 0}.
\end{aligned}
\end{equation}
%
This is \textAndIndex{Gauss's law}
%
\boxedEquation{eqn:gaMagneticSourcesToTensorToVector:500}{
\spacegrad \cdot \bcE
=
\rho/\epsilon_0.
}
%
For a spacelike index, any one is representative. Expanding index 1 gives
%
\begin{equation}\label{eqn:gaMagneticSourcesToTensorToVector:520}
\begin{aligned}
\inv{c \epsilon_0} J^1
&= \partial_\nu F^{\nu 1}
\\ &= \inv{c} \partial_t F^{0 1}
+ \partial_2 F^{2 1}
+ \partial_3 F^{3 1}
\\ &= -\inv{c} E^1
+ \partial_2 (c \mu_0 H^3)
+ \partial_3 (-c \mu_0 H^2)
\\ &=
\lr{ -\inv{c} \PD{t}{\bcE} + c \mu_0 \spacegrad \cross \bcH } \cdot \Be_1.
\end{aligned}
\end{equation}
%
Extending this to the other indexes and multiplying through by \( \epsilon_0 c \) recovers the \textAndIndex{Ampere-Maxwell equation} (assuming \textAndIndex{linear media})
%
%\begin{equation}\label{eqn:gaMagneticSourcesToTensorToVector:540}
\boxedEquation{eqn:gaMagneticSourcesToTensorToVector:540}{
\spacegrad \cross \bcH = \bcJ + \PD{t}{\bcD}.
}
%\end{equation}
%
The expansion of the 0th free (timelike) index of the dual Maxwell tensor equation is
%
\begin{equation}\label{eqn:gaMagneticSourcesToTensorToVector:400}
\begin{aligned}
M^0
&=
\inv{2} \epsilon^{\nu \alpha \beta 0}
\partial_\nu F_{\alpha \beta}
\\ &=
-\inv{2} \epsilon^{0 \nu \alpha \beta}
\partial_\nu F_{\alpha \beta}
\\ &=
-\inv{2}
\lr{
\partial_1 (F_{2 3} - F_{3 2})
+\partial_2 (F_{3 1} - F_{1 3})
+\partial_3 (F_{1 2} - F_{2 1})
}
\\ &=
-
\lr{
\partial_1 F_{2 3}
+\partial_2 F_{3 1}
+\partial_3 F_{1 2}
}
\\ &=
-
\lr{
\partial_1 (- c \mu_0 H^1 ) +
\partial_2 (- c \mu_0 H^2 ) +
\partial_3 (- c \mu_0 H^3 )
},
\end{aligned}
\end{equation}
%
but \( M^0 = c \rho_\txtm \), giving us Gauss's law for magnetism \index{Gauss's law!magnetism} (with \textAndIndex{magnetic charge density} included)
%
%\begin{equation}\label{eqn:gaMagneticSourcesToTensorToVector:420}
\boxedEquation{eqn:gaMagneticSourcesToTensorToVector:420}{
\spacegrad \cdot \bcH = \rho_\txtm/\mu_0.
}
%\end{equation}
%
For the spacelike indexes of the dual Maxwell equation, only one need be computed (say 1), and cyclic permutation will provide the rest. That is
%
\begin{equation}\label{eqn:gaMagneticSourcesToTensorToVector:440}
\begin{aligned}
M^1
&= \inv{2} \epsilon^{\nu \alpha \beta 1} \partial_\nu F_{\alpha \beta}
\\ &=
\inv{2} \lr{ \partial_2 \lr{F_{3 0} - F_{0 3}} }
+\inv{2} \lr{ \partial_3 \lr{F_{0 2} - F_{0 2}} }
+\inv{2} \lr{ \partial_0 \lr{F_{2 3} - F_{3 2}} }
\\ &=
- \partial_2 F^{3 0}
+ \partial_3 F^{2 0}
+ \partial_0 F_{2 3}
\\ &=
-\partial_2 E^3 + \partial_3 E^2 + \inv{c} \PD{t}{} \lr{ - c \mu_0 H^1 }
\\ &= - \lr{ \spacegrad \cross \bcE + \mu_0 \PD{t}{\bcH} } \cdot \Be_1.
\end{aligned}
\end{equation}
%
Extending this to the rest of the coordinates gives the \textAndIndex{Maxwell-Faraday equation} (as extended to include \textAndIndex{magnetic current density} sources)
%
%\begin{equation}\label{eqn:gaMagneticSourcesToTensorToVector:460}
\boxedEquation{eqn:gaMagneticSourcesToTensorToVector:460}{
\spacegrad \cross \bcE = -\bcM - \mu_0 \PD{t}{\bcH}.
}
%\end{equation}
%
This takes things full circle, going from the vector differential Maxwell's equations, to the \textAndIndex{Geometric Algebra} form of \textAndIndex{Maxwell's equation}, to Maxwell's equations in \textAndIndex{tensor form}, and back to the vector form. Not only is the tensor form of Maxwell's equations with magnetic sources now known, the translation from the tensor and vector formalism has also been verified, and miraculously no signs or factors of 2 were lost or gained in the process.
%
%\EndNoBibArticle