-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathadvancedantennaProblemSet5Problem1.tex
323 lines (317 loc) · 10.7 KB
/
advancedantennaProblemSet5Problem1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
%
% Copyright © 2015 Peeter Joot. All Rights Reserved.
% Licenced as described in the file LICENSE under the root directory of this GIT repository.
%
\makeoproblem{Aperture antenna.}{advancedantenna:problemSet5:1}{2015 ps5, p1}{
\index{aperture antenna}
A \textAndIndex{rectangular aperture} lies along the x-y plane and has dimensions \( a \times b \). Let the electric
field aperture distribution be given by,
%
\begin{equation}\label{eqn:advancedantennaProblemSet5Problem1:20}
\BE_{\textrm{ap}} = \ycap \cos\lr{ \frac{\pi}{a} x }.
\end{equation}
%
The aperture is cut out of an infinite perfectly electric conductor.
The origin of the coordinate system is at the center of the aperture.
Using the theory of radiation from apertures based on the equivalence principle, calculate:
%
\begin{enumerate}
\item
An expression for \( E_\theta(\theta, \phi) \).
\item
An expression for \( E_\phi(\theta, \phi) \).
\item
Consider an aperture of dimensions \( a = b = 10 \si{cm} \) at \( f = 9.8 \si{GHz} \).
\end{enumerate}
%
\makesubproblem{}{advancedantenna:problemSet5:1a}
Plot the E-plane and H-plane patterns (power).
\makesubproblem{}{advancedantenna:problemSet5:1b}
Calculate the positions of the first nulls in the E and H planes.
\makesubproblem{}{advancedantenna:problemSet5:1c}
From the plot determine the levels of the first sidelobe in the E and H planes.
\makesubproblem{}{advancedantenna:problemSet5:1d}
From the plot determine the 3dB beamwidth of the main lobe in the E and H planes.
} % makeoproblem
%
\makeanswer{advancedantenna:problemSet5:1}{
%
Following the transformation procedure of \citep{balanis2005antenna} \textfigref{12.5}, the equivalent source for this electric field is a magnetic current
%
\begin{equation}\label{eqn:advancedantennaProblemSet5Problem1:40}
\BM_\txts
= - 2 \zcap \cross \ycap \cos\lr{ \frac{\pi}{a} x }
= 2 \xcap \cos\lr{ \frac{\pi}{a} x }.
\end{equation}
%
producing an electric vector potential that is approximately
%
\begin{equation}\label{eqn:advancedantennaProblemSet5Problem1:60}
\begin{aligned}
\BF
&= \frac{\epsilon}{4 \pi r} \int_{-a/2}^{a/2} dx' \int_{-b/2}^{b/2} dy' \BM_\txts e^{-j k ( r - \rcap \cdot \Br' ) } \\
&= \frac{\epsilon}{2 \pi r} e^{-j k r} \xcap \int_{-a/2}^{a/2} dx' \int_{-b/2}^{b/2} dy' \cos\lr{ \frac{\pi}{a} x' } e^{j k \rcap \cdot \Br' } \\
&= \frac{\epsilon}{2 \pi r} e^{-j k r} \xcap \int_{-a/2}^{a/2} dx' \int_{-b/2}^{b/2} dy' \cos\lr{ \frac{\pi}{a} x' }
e^{j k \sin\theta \lr{\cos\phi x' + \sin\phi y'} } \\
&= \frac{\epsilon}{4 \pi r} e^{-j k r} \xcap \int_{-a/2}^{a/2} dx'
\lr{
e^{j k \sin\theta \cos\phi x' + j \pi x'/a}
+
e^{j k \sin\theta \cos\phi x' - j \pi x'/a}
} \times \\
&\qquad
\int_{-b/2}^{b/2} dy'
e^{j k \sin\theta \sin\phi y' }.
\end{aligned}
\end{equation}
%
A symmetric interval around the origin has been chosen to avoid the introduction of complex phases.
%
Each of these integrals is of the form
%
\begin{equation}\label{eqn:advancedantennaProblemSet5Problem1:80}
\begin{aligned}
\int_{-c/2}^{c/2} dz'
e^{j \alpha z' }
&=
\evalrange{ \frac{e^{j \alpha z' }}{j \alpha} }{-c/2}{c/2}
\\ &=
\frac{ e^{j \alpha c/2} - e^{-j \alpha c/2} }{ j \alpha }
\\ &=
\frac{\sin\lr{\alpha c /2} }{\alpha/2}.
\end{aligned}
\end{equation}
%
With
%
\begin{subequations}
\label{eqn:advancedantennaProblemSet5Problem1:360}
\begin{equation}\label{eqn:advancedantennaProblemSet5Problem1:380}
X = k \sin\theta \cos\phi
\end{equation}
\begin{equation}\label{eqn:advancedantennaProblemSet5Problem1:400}
Y = k \sin\theta \sin\phi,
\end{equation}
\end{subequations}
%
the electric vector potential is
%
\begin{equation}\label{eqn:advancedantennaProblemSet5Problem1:100}
\begin{aligned}
\BF
&= \frac{\epsilon}{4 \pi r} e^{-j k r} \xcap
\frac{ \sin\lr{ Y b/2 } }{ Y/2}
\times \\
&\qquad
\lr{
\frac{ \sin\lr{ (X + \pi/a) a/2 } }{ (X + \pi/a)/2}
+
\frac{ \sin\lr{ (X - \pi/a) a/2 } }{ (X - \pi/a)/2}
}
\\
&= \frac{\epsilon}{2 \pi r} e^{-j k r} \xcap
\frac{ \sin\lr{ Y b/2 } }{ Y/2}
\times \\
&\qquad \frac{
(X - \pi/a) \sin\lr{ X a/2 + \pi/2 }
+
(X + \pi/a) \sin\lr{ X a/2 - \pi/2 }
}{ X^2 - (\pi/a)^2}
.
\end{aligned}
\end{equation}
%
Since
\begin{subequations}
\label{eqn:advancedantennaProblemSet5Problem1:120}
\begin{equation}\label{eqn:advancedantennaProblemSet5Problem1:140}
\sin( z + \pi/2 ) + \sin( z - \pi/2 ) = 0
\end{equation}
\begin{equation}\label{eqn:advancedantennaProblemSet5Problem1:160}
\sin( z + \pi/2 ) - \sin( z - \pi/2 ) = 2 \cos z,
\end{equation}
\end{subequations}
%
this reduces to
%
\begin{equation}\label{eqn:advancedantennaProblemSet5Problem1:180}
\BF
=
-\frac{\epsilon a b}{4 r} e^{-j k r} \xcap
\frac{
\cos\lr{ X a/2 }
}{ (X a/2)^2 - (\pi/2)^2}
\frac{ \sin\lr{ Y b/2 } }{ Y b/2}.
\end{equation}
%
The far field magnetic field is
%
\begin{equation}\label{eqn:advancedantennaProblemSet5Problem1:200}
\begin{aligned}
\BH
&= -j \omega \BF_T
\\ &=
j k c \frac{\epsilon a b}{4 r } e^{-j k r} \lr{ \xcap - \lr{\xcap \cdot \rcap} \rcap }
\frac{
\cos\lr{ X a/2 }
}{ a^2 X^2/4 - (\pi/2)^2}
\frac{ \sin\lr{ Y b/2 } }{ Y b/2}
\\ &=
\frac{j k a b}{4 r \eta} e^{-j k r} \lr{ \xcap - \lr{ \xcap \cdot \rcap} \rcap }
\frac{
\cos\lr{ X a/2 }
}{ (X a/2)^2 - (\pi/2)^2}
\frac{ \sin\lr{ Y b/2 } }{ Y b/2}.
\end{aligned}
\end{equation}
%
Since
%
\begin{equation}\label{eqn:advancedantennaProblemSet5Problem1:280}
\xcap = \sin\theta \cos\phi \rcap + \cos\theta \cos\phi \thetacap - \sin\phi \phicap,
\end{equation}
%
the far field magnetic field is
%
\begin{equation}\label{eqn:advancedantennaProblemSet5Problem1:420}
\BH
=
\frac{j k a b}{4 r \eta} e^{-j k r} \lr{ \cos\theta \cos\phi \thetacap - \sin\phi \phicap}
\frac{
\cos\lr{ X a/2 }
}{ (X a/2)^2 - (\pi/2)^2}
\frac{ \sin\lr{ Y b/2 } }{ Y b/2}.
\end{equation}
This can be related to the electric field noting that the dual of the far field relationship
%
\begin{equation}\label{eqn:advancedantennaProblemSet5Problem1:220}
\BH_A = \inv{\eta} \rcap \cross \BE_A,
\end{equation}
%
is
%
\begin{equation}\label{eqn:advancedantennaProblemSet5Problem1:240}
-\BE_F = \eta \rcap \cross \BH_F,
\end{equation}
%
so the far field electric field is
%
\begin{equation}\label{eqn:advancedantennaProblemSet5Problem1:260}
\begin{aligned}
\BE
&= -\eta \rcap \cross \BH
\\ &=
-\frac{j k a b}{4 r } e^{-j k r} \rcap \cross \xcap
\frac{
\cos\lr{ X a/2 }
}{ (X a/2)^2 - (\pi/2)^2}
\frac{ \sin\lr{ Y b/2 } }{ Y b/2}.
\end{aligned}
\end{equation}
%
That electric field direction is
%
\begin{equation}\label{eqn:advancedantennaProblemSet5Problem1:300}
\begin{aligned}
\rcap \cross \xcap
&=
\cos\theta \cos\phi \rcap \cross \thetacap - \sin\phi \rcap \cross \phicap
\\ &=
\cos\theta \cos\phi \phicap + \sin\phi \thetacap,
\end{aligned}
\end{equation}
%
so the electric field is
%
\begin{equation}\label{eqn:advancedantennaProblemSet5Problem1:440}
\BE
=
-\frac{j k a b}{4 r } e^{-j k r} \lr{ \cos\theta \cos\phi \phicap + \sin\phi \thetacap }
\frac{
\cos\lr{ X a/2 }
}{ (X a/2)^2 - (\pi/2)^2}
\frac{ \sin\lr{ Y b/2 } }{ Y b/2}.
\end{equation}
Note that the electric and magnetic fields are perpendicular, as expected.
%
\begin{enumerate}
\item
The polar coordinate of the electric field is
%
\begin{equation}\label{eqn:advancedantennaProblemSet5Problem1:320}
E_\theta =
-\frac{j k a b}{4 r } e^{-j k r} \sin\phi
\frac{
\cos\lr{ X a/2 }
}{ (X a/2)^2 - (\pi/2)^2}
\frac{ \sin\lr{ Y b/2 } }{ Y b/2}.
\end{equation}
%
\item
The azimuthal coordinate of the electric field is
%
\begin{equation}\label{eqn:advancedantennaProblemSet5Problem1:340}
E_\phi
=
-\frac{j k a b}{4 r } e^{-j k r} \cos\theta \cos\phi
\frac{
\cos\lr{ X a/2 }
}{ (X a/2)^2 - (\pi/2)^2}
\frac{ \sin\lr{ Y b/2 } }{ Yb/2}.
\end{equation}
%
\item
Now for the plots and numeric values requested for the given aperture size and source frequency.
The electric field power pattern for
an aperture of dimensions \( a = b = 10 \si{cm} \) at \( f = 9.8 \si{GHz} \) is plotted in \si{dB} scale from 0 \si{dB} down to 40 \si{dB} in \cref{fig:sphericalPolarPlot:sphericalPolarPlotFig6}.
\mathImageFigure{../figures/ece1229-antenna/sphericalPolarPlotFig6}{Electric field power pattern, 0 \si{dB} to -40 \si{dB}.}{fig:sphericalPolarPlot:sphericalPolarPlotFig6}{0.4}{ps5:problem1plot.nb}
\end{enumerate}
\makeSubAnswer{}{advancedantenna:problemSet5:1a}
%
The maximum field is found at \( \theta = 0 \).
The value of \( \phi \) is inconsequential, so we have an infinite number of E-plane surfaces, and can pick the \( \theta = \phi = 0 \) wave vector direction for simplicity. For such a wave vector direction \( \Ecap = \ycap, \Hcap = \xcap \), and the corresponding E-plane and H-plane power fields are plotted in
\cref{fig:hplane:hplaneFig2}.
%\cref{fig:eplane:eplaneFig2}.
%, and \cref{fig:hplane:hplaneFig3}.
%
\mathImageTwoFigures{../figures/ece1229-antenna/eplaneFig2}{../figures/ece1229-antenna/hplaneFig3}{E-H-plane (power) for \( \phi =0 \).}{fig:hplane:hplaneFig2}{scale=0.4}{ps5:vecE.m}
%\mathImageFigure{../figures/ece1229-antenna/eplaneFig2}{E-plane (power) for \( \phi =0 \).}{fig:eplane:eplaneFig2}{0.3}{ps5:vecE.m}
%\mathImageFigure{../figures/ece1229-antenna/hplaneFig3}{H-plane (power) for \( \phi =0 \).}{fig:hplane:hplaneFig3}{0.3}{ps5:vecE.m}
%
These fields are also plotted on a log scale in \cref{fig:eplanePolar:eplanePolarFig4}
%, and \cref{fig:hplanePolar:hplanePolarFig5}
, from 0 \si{dB} down to -50 \si{dB}.
%
\mathImageTwoFigures{../figures/ece1229-antenna/eplanePolarFig4}{../figures/ece1229-antenna/hplanePolarFig5}{E,H-plane (power) for \( \phi =0 \), \si{dB} scale.}{fig:eplanePolar:eplanePolarFig4}{scale=0.5}{ps5:vecE.m}
%\mathImageFigure{../figures/ece1229-antenna/eplanePolarFig4}{E-plane (power) for \( \phi =0 \), \si{dB} scale.}{fig:eplanePolar:eplanePolarFig4}{0.3}{ps5:vecE.m}
%\mathImageFigure{../figures/ece1229-antenna/hplanePolarFig5}{H-plane (power) for \( \phi =0 \), \si{dB} scale.}{fig:hplanePolar:hplanePolarFig5}{0.3}{ps5:vecE.m}
%
\makeSubAnswer{}{advancedantenna:problemSet5:1b}
%
For the E-plane the zeros are found at
\ang{27}, \ang{50}, \ang{90}, \ang{130}, and \ang{153}.
For the H-plane the zeros are found at
\ang{18}, \ang{38}, \ang{67}, \ang{113}, \ang{142}, \ang{162}.
These were determined numerically, but these can also be visually verified against the \si{dB} power plots above, which are marked in degrees.
%
\makeSubAnswer{}{advancedantenna:problemSet5:1c}
%
For the E-plane the sidelobe peaks are found at
\ang{35}, \ang{60}, \ang{120}, \ang{145}, with respective levels (\si{dB}) of
-25,
-37,
-37,
-25.
For the H-plane the sidelobe peaks are found at
\ang{26}, \ang{49}, \ang{90}, \ang{131}, \ang{154}, with respective levels (\si{dB}) of
-13.2666,
-17.8436,
-22.8361,
-17.8436,
-13.2666.
These were also calculated numerically, but can also be visually verified against the \si{dB} power plots above.
%
\makeSubAnswer{}{advancedantenna:problemSet5:1d}
%
The -3 \si{dB} point of the main lobe is found where \( \Abs{\BE} = 10^{-3/20} \). For the E-plane this is at \ang{10}, and for the H-plane this is found at \ang{8}.
}