-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathadvancedantennaProblemSet1Problem6.tex
163 lines (163 loc) · 4.29 KB
/
advancedantennaProblemSet1Problem6.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
%
% Copyright © 2015 Peeter Joot. All Rights Reserved.
% Licenced as described in the file LICENSE under the root directory of this GIT repository.
%
\makeoproblem{Radar cross section.}{advancedantenna:problemSet1:6}{2015 ps1, p6}{
\index{radar cross section}
A rectangular X-band horn, with aperture dimensions \( 5.5 \si{cm} \times 7.4 \si{cm} \) and a gain of 16.3 \si{dB}
at 10 \si{GHz}, transmits and receives power scattered by the objects specified below.
\index{X-band}
\index{scattered power}
\index{radar cross section}
\index{RCS}
%
In each case, determine the maximum scattered power delivered to the load when the
distance between the horn and scattering object is \( n \lambda \), where \( n \) is
%
\begin{enumerate}
\item
200
\item
500.
\end{enumerate}
%
The scattering objects to consider are a perfectly conducting
%
\makesubproblem{}{advancedantenna:problemSet1:6a}
%
sphere of radius \( a = 5 \lambda \),
%
\makesubproblem{}{advancedantenna:problemSet1:6b}
%
plate of dimensions \( 10 \lambda \times 10 \lambda \).
%
} % makeoproblem
%
\makeanswer{advancedantenna:problemSet1:6}{
%
This is an application of the Radar Cross Section equation
%, and it doesn't appear that the horn aperture dimensions are relevant
%
\begin{equation}\label{eqn:advancedantennaProblemSet1Problem6:120}
\begin{aligned}
\frac{P_\txtr}{P_\txtt}
&= \sigma \frac{G^2}{4 \pi} \lr{\frac{\lambda}{4 \pi n^2 \lambda^2}}^2
\\ &= \sigma \frac{G^2}{4 \pi} \lr{\frac{1}{4 \pi n^2 \lambda}}^2.
\end{aligned}
\end{equation}
%
The same gain is used for transmission and reception, since both are for the same horn. That gain (not in \si{dB}) is
%
\begin{equation}\label{eqn:advancedantennaProblemSet1Problem6:40}
\begin{aligned}
G &= 10^{16.3/10} \\
&= 43.
\end{aligned}
\end{equation}
%
The wavelength is
%
\begin{equation}\label{eqn:advancedantennaProblemSet1Problem6:60}
\begin{aligned}
\lambda &= \frac{3 \times 10^8 \,\si{m/s}}{10^{10} \,\si{m}} \\
&= 0.03 \,\si{m}.
\end{aligned}
\end{equation}
%
\makeSubAnswer{}{advancedantenna:problemSet1:6a}
%
For the sphere the scattering area is
%
\begin{equation}\label{eqn:advancedantennaProblemSet1Problem6:80}
\begin{aligned}
\sigma &= \pi r^2 \\
&= \pi ( 5 \lambda )^2 \\
&= 25 \pi \lambda^2,
\end{aligned}
\end{equation}
%
so the ratio of delivered power to the transmitted power is
%
\begin{equation}\label{eqn:advancedantennaProblemSet1Problem6:100}
\begin{aligned}
\frac{P_\txtr}{P_\txtt}
&= 25 \pi \lambda^2 \frac{G^2}{4 \pi} \lr{\frac{1}{4 \pi n^2 \lambda}}^2
\\ &= \frac{25 (43)^2}{64 \pi^2 n^4}
\\ &= \frac{73}{n^4}.
\end{aligned}
\end{equation}
%
For the \( n = 200, 500 \) cases respectively, the delivered power ratio is
%
\begin{enumerate}
\item \( n = 200 \)
%
\begin{equation}\label{eqn:advancedantennaProblemSet1Problem6:140}
\begin{aligned}
\frac{P_\txtr}{P_\txtt}
&= \frac{73}{200^4}
\\ &= 4.6 \times 10^{-8}.
\end{aligned}
\end{equation}
%
\item \( R = 500 \lambda \)
%
\begin{equation}\label{eqn:advancedantennaProblemSet1Problem6:160}
\begin{aligned}
\frac{P_\txtr}{P_\txtt}
&= \frac{73}{500^4}
\\ &= 1.2 \times 10^{-9}.
\end{aligned}
\end{equation}
%
\end{enumerate}
%
\makeSubAnswer{}{advancedantenna:problemSet1:6b}
%
For the plate the scattering area is
%
\begin{equation}\label{eqn:advancedantennaProblemSet1Problem6:180}
\begin{aligned}
\sigma
&= 4 \pi \frac{\lr{ L W }^2}{\lambda^2 }
\\ &= 4 \pi \frac{\lr{ 100 \lambda^2 }^2}{\lambda^2 }
\\ &= 4 \pi \lambda^2 \times 10^4,
\end{aligned}
\end{equation}
%
so the ratio of delivered power to the transmitted power is
%
\begin{equation}\label{eqn:advancedantennaProblemSet1Problem6:200}
\begin{aligned}
\frac{P_\txtr}{P_\txtt}
&= 4 \pi \lambda ^2 \times 10^4 \frac{G^2}{4 \pi} \lr{\frac{1}{4 \pi n^2 \lambda}}^2
\\ &= \frac{(43)^2 \times 10^4}{16 \pi^2 n^4}
\\ &= \frac{1.2 \times 10^5}{n^4}.
\end{aligned}
\end{equation}
%
For the \( n = 200, 500 \) cases respectively, the delivered power ratio is
%
\begin{enumerate}
\item \( n = 200 \)
%
\begin{equation}\label{eqn:advancedantennaProblemSet1Problem6:220}
\begin{aligned}
\frac{P_\txtr}{P_\txtt}
&= \frac{1.2 \times 10^5}{200^4}
\\ &= 7.3 \times 10^{-5}.
\end{aligned}
\end{equation}
%
\item \( R = 500 \lambda \)
%
\begin{equation}\label{eqn:advancedantennaProblemSet1Problem6:240}
\begin{aligned}
\frac{P_\txtr}{P_\txtt}
&= \frac{1.2 \times 10^5}{500^4}
\\ &= 1.9 \times 10^{-6}.
\end{aligned}
\end{equation}
%
\end{enumerate}
}