-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathExPlaneWave.tex
135 lines (135 loc) · 3.85 KB
/
ExPlaneWave.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
%
% Copyright © 2015 Peeter Joot. All Rights Reserved.
% Licenced as described in the file LICENSE under the root directory of this GIT repository.
%
%\input{../blogpost.tex}
%\renewcommand{\basename}{ExPlaneWave}
%\renewcommand{\dirname}{notes/ece1229/}
%%\newcommand{\dateintitle}{}
%%\newcommand{\keywords}{}
%
%\input{../peeter_prologue_print2.tex}
%\usepackage{peeters_layout_exercise}
%
%\beginArtNoToc
%
%\generatetitle{Plane wave solution directly from Maxwell's equations}
%\section{Plane wave solution directly from Maxwell's equations}
%\label{chap:ExPlaneWave}
%
%Here's a problem that I thought was fun, an exercise for the reader to show that the plane wave solution to Maxwell's equations can be found with ease directly from Maxwell's equations. This is in contrast to the what seems like the usual method of first showing that Maxwell's equations imply wave equations for the fields, and then solving those wave equations.
%
\makeoproblem{\( \xcap \) oriented plane wave electric field.}{problem:ExPlaneWave:1}{\citep{balanis1989advanced} ex. 4.1}{
A uniform plane wave having only an \( x \) component of the electric field is traveling in the \( + z \) direction in an unbounded lossless, source-0free region. Using Maxwell's equations write expressions for the electric and corresponding magnetic field intensities.
} % problem
%
\makeanswer{problem:ExPlaneWave:1}{
The phasor form of Maxwell's equations for a source free region are
%
\begin{subequations}
\label{eqn:ExPlaneWave:20}
\begin{equation}\label{eqn:ExPlaneWave:40}
\spacegrad \cross \BE = -j \omega \BB
\end{equation}
\begin{equation}\label{eqn:ExPlaneWave:60}
\spacegrad \cross \BH = j \omega \BD
\end{equation}
\begin{equation}\label{eqn:ExPlaneWave:80}
\spacegrad \cdot \BD = 0
\end{equation}
\begin{equation}\label{eqn:ExPlaneWave:100}
\spacegrad \cdot \BB = 0.
\end{equation}
\end{subequations}
%
Since \( \BE = \xcap E(z) \), the magnetic field follows from \cref{eqn:ExPlaneWave:40}
%
\begin{equation}\label{eqn:ExPlaneWave:120}
\begin{aligned}
-j \omega \BB
&= \spacegrad \cross \BE
\\ &=
\begin{vmatrix}
\xcap & \ycap & \zcap \\
\partial_x & \partial_y & \partial_z \\
E & 0 & 0
\end{vmatrix}
\\ &=
\ycap \partial_z E(z)
- \zcap \cancel{\partial_y E(z)},
\end{aligned}
\end{equation}
%
or
%
\begin{equation}\label{eqn:ExPlaneWave:140}
\BB =
-\inv{j \omega} \partial_z E.
\end{equation}
%
This is constrained by \cref{eqn:ExPlaneWave:60}
%
\begin{equation}\label{eqn:ExPlaneWave:160}
\begin{aligned}
j \omega \epsilon \xcap E
&=
\inv{\mu} \spacegrad \cross \BB
\\ &=
-\inv{\mu j \omega}
\begin{vmatrix}
\xcap & \ycap & \zcap \\
\partial_x & \partial_y & \partial_z \\
0 & \partial_z E & 0
\end{vmatrix}
\\ &=
-\inv{\mu j \omega}
\lr{
-\xcap \partial_{z z} E
+ \zcap \partial_x \partial_z E
}.
\end{aligned}
\end{equation}
%
Since \( \partial_x \partial_z E = \partial_z \lr{ \partial_x E } = \partial_z \inv{\epsilon} \spacegrad \cdot \BD = \partial_z 0 \), this means
%
\begin{equation}\label{eqn:ExPlaneWave:180}
\partial_{zz} E = -\omega^2 \epsilon\mu E = -k^2 E.
\end{equation}
%
This is the usual starting place that we use to show that the plane wave has an exponential form
%
\begin{equation}\label{eqn:ExPlaneWave:200}
\BE(z) =
\xcap
\lr{
E_{+} e^{-j k z}
+
E_{-} e^{j k z}
}.
\end{equation}
%
The magnetic field from \cref{eqn:ExPlaneWave:140} is
%
\begin{equation}\label{eqn:ExPlaneWave:220}
\begin{aligned}
\BB
&= \frac{j}{\omega} \lr{ -j k E_{+} e^{-j k z} + j k E_{-} e^{j k z} }
\\ &= \inv{c} \lr{ E_{+} e^{-j k z} - E_{-} e^{j k z} },
\end{aligned}
\end{equation}
%
or
%
\begin{equation}\label{eqn:ExPlaneWave:240}
\begin{aligned}
\BH
&= \inv{\mu c} \lr{ E_{+} e^{-j k z} - E_{-} e^{j k z} }
\\ &= \inv{\eta} \lr{ E_{+} e^{-j k z} - E_{-} e^{j k z} }.
\end{aligned}
\end{equation}
%
A solution requires zero divergence for the magnetic field, but that can be seen to be the case by inspection.
} % answer
%
%\EndArticle
%\EndNoBibArticle