-
Notifications
You must be signed in to change notification settings - Fork 363
/
Copy pathedgesNmsMex.cpp
56 lines (51 loc) · 2.25 KB
/
edgesNmsMex.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
/*******************************************************************************
* Structured Edge Detection Toolbox Version 3.01
* Code written by Piotr Dollar, 2014.
* Licensed under the MSR-LA Full Rights License [see license.txt]
*******************************************************************************/
#include <mex.h>
#include <math.h>
#ifdef USEOMP
#include <omp.h>
#endif
// return I[x,y] via bilinear interpolation
inline float interp( float *I, int h, int w, float x, float y ) {
x = x<0 ? 0 : (x>w-1.001 ? w-1.001 : x);
y = y<0 ? 0 : (y>h-1.001 ? h-1.001 : y);
int x0=int(x), y0=int(y), x1=x0+1, y1=y0+1;
float dx0=x-x0, dy0=y-y0, dx1=1-dx0, dy1=1-dy0;
return I[x0*h+y0]*dx1*dy1 + I[x1*h+y0]*dx0*dy1 +
I[x0*h+y1]*dx1*dy0 + I[x1*h+y1]*dx0*dy0;
}
// E = mexFunction(E,O,r,s,m,nThreads)
void mexFunction( int nl, mxArray *pl[], int nr, const mxArray *pr[] )
{
float *E0 = (float*) mxGetData(pr[0]); // original edge map
float *O = (float*) mxGetData(pr[1]); // orientation map
int r = (int) mxGetScalar(pr[2]); // radius for nms supr
int s = (int) mxGetScalar(pr[3]); // radius for supr boundaries
float m = (float) mxGetScalar(pr[4]); // multiplier for conservative supr
int nThreads = (int) mxGetScalar(pr[5]); // number of threads for evaluation
int h=(int) mxGetM(pr[0]), w=(int) mxGetN(pr[0]);
pl[0] = mxCreateNumericMatrix(h,w,mxSINGLE_CLASS,mxREAL);
float *E = (float*) mxGetData(pl[0]);
// suppress edges where edge is stronger in orthogonal direction
#ifdef USEOMP
nThreads = nThreads<omp_get_max_threads() ? nThreads : omp_get_max_threads();
#pragma omp parallel for num_threads(nThreads)
#endif
for( int x=0; x<w; x++ ) for( int y=0; y<h; y++ ) {
float e=E[x*h+y]=E0[x*h+y]; if(!e) continue; e*=m;
float coso=cos(O[x*h+y]), sino=sin(O[x*h+y]);
for( int d=-r; d<=r; d++ ) if( d ) {
float e0 = interp(E0,h,w,x+d*coso,y+d*sino);
if(e < e0) { E[x*h+y]=0; break; }
}
}
// suppress noisy edge estimates near boundaries
s=s>w/2?w/2:s; s=s>h/2? h/2:s;
for( int x=0; x<s; x++ ) for( int y=0; y<h; y++ ) {
E[x*h+y]*=x/float(s); E[(w-1-x)*h+y]*=x/float(s); }
for( int x=0; x<w; x++ ) for( int y=0; y<s; y++ ) {
E[x*h+y]*=y/float(s); E[x*h+(h-1-y)]*=y/float(s); }
}