-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter_10.rkt
227 lines (187 loc) · 5.52 KB
/
chapter_10.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
; This chapter is all about implementing the scheme language in scheme itself.
; pretty cool!
; helper functions
(define (first p) (car p))
(define (second p)(car (cdr p)))
(define (build a b) (cons a (cons b (quote()))))
(define (third p) (car (cdr (cdr p))))
(define (atom? a) (not (list? a)))
(define lookup-in-entry
(lambda (name entry error_function)
(lookup-in-entry-help name
(first entry)
(second entry)
error_function)))
(define lookup-in-entry-help
(lambda (name first second error_function)
(cond
((null? first) (error_function name))
((eq? name (car first)) (car second))
(else (lookup-in-entry-help name (cdr first) (cdr second) error_function))
)))
;(lookup-in-entry 'foo (list (list 'bar 'foo) (list 'bar_val 'foo_val)) (lambda (x) x))
;(lookup-in-entry 'non-existent (list (list 'bar 'foo) (list 'bar_val 'foo_val)) (lambda (x) x))
(define extend-table cons)
(define lookup-in-table
(lambda (name table error-function)
(cond
((null? table) (error-function name))
(else
(lookup-in-entry name (car table) (lambda (name) (lookup-in-table name (cdr table) error-function)))))
))
;(lookup-in-table 'foo (list (list (list 'bar 'foo) (list 'bar_val 'foo_val))) (lambda (x) x))
(define expression-to-action
(lambda (e)
(cond
((atom? e) (atom-to-action e))
( else (list-to-action e)))))
(define atom-to-action
(lambda (e)
(cond
((number? e) *const)
((eq? e #t) *const)
((eq? e #f) *const)
((eq? e (quote cons)) *const)
((eq? e (quote car)) *const)
((eq? e (quote cdr)) *const)
((eq? e (quote null?)) *const)
((eq? e (quote eq?)) *const)
((eq? e (quote atom?)) *const)
((eq? e (quote zero?)) *const)
((eq? e (quote add1)) *const)
((eq? e (quote sub1)) *const)
((eq? e (quote number?)) *const)
(else *identifier))))
(define list-to-action
(lambda (e)
(cond
((atom? (car e))
(cond
((eq? (car e) (quote quote)) *quote)
((eq? (car e) (quote lambda)) *lambda)
((eq? (car e) (quote cond)) *cond)
(else *apply)))
(else *application))))
(define value
(lambda (e)
(meaning e (quote ()))))
(define meaning
(lambda (e table)
((expression-to-action e) e table)))
(define *const
(lambda (e table)
(cond
((number? e) e)
((eq? e #t ) #t)
((eq? e #f ) #f)
(else (build (quote primitive) e)))))
(define text-of second)
(define *quote
(lambda (e table)
(text-of e)))
(define *identifier
(lambda (e table)
(lookup-in-table e table (lambda (name) (car (quote ()))))))
(define *lambda
(lambda (e table)
(build (quote non-primitive)
(cons table (cdr e)))))
(define table-of first)
(define formals-of second)
(define body-of third)
; below is a partial implementation of cond.
(define evcon
(lambda (lines table)
(cond
((else? (question-of (car lines)))
(meaning (answer-of (car lines)) table))
((meaning (question-of (car lines)) table)
(meaning (answer-of (car lines)) table))
(else (evcon (cdr lines) table)))))
(define else?
(lambda (x)
(cond
((atom? x) (eq? x (quote else)))
(else #f))))
(define question-of first)
(define answer-of second)
(define *cond
(lambda (e table)
(evcon (cond-lines-of e) table)))
(define cond-lines-of cdr)
; define an expression
(define some-expr (list 'cond (list 'coffee 'klatsch) (list 'else 'party)))
; we're going to make a table, which is a list of entries. first,
; make some entries.
(define entry-1 (list (list 'coffee) (list #t)))
(define entry-2 (list (list 'klatsch 'party) (list 5 6)))
; now make a table.
(define some-table (build entry-1 entry-2))
;(lookup-in-table 'klatsch some-table (lambda (name) (list 'oh-no-no-no)))
;(*cond some-expr some-table)
(define evlis
(lambda (args table)
(cond
((null? args) (quote()))
(else
(cons (meaning (car args) table) (evlis (cdr args) table))
))))
(define *application
(lambda (e table)
(*apply
(meaning (function-of e) table)
(evlis (arguments-of e) table))))
(define function-of car)
(define arguments-of cdr)
(define primitive?
(lambda (l)
(eq? (first l) 'primitive)))
(define non-primitive?
(lambda (l)
(eq? (first l) 'non-primitive)))
(define *apply
(lambda (fun vals)
(cond
((primitive? fun)
(apply-primitive (second fun) vals))
((non-primitive? fun)
(apply-closure
(second fun) vals)))))
(define apply-primitive (lambda (name vals)
(cond
((eq? name 'cons )
(cons (first vals) (second vals)))
((eq? name (quote car))
(car (first vals)))
((eq? name (quote cdr))
( cdr (first vals)))
((eq? name (quote null?))
(null? (first vals)))
((eq? name (quote eq?))
( eq? (first vals) (second vals) ))
((eq? name (quote atom?))
( :atom? (first vals)))
((eq? name (quote zero?))
(zero? (first vals)))
((eq? name (quote add1))
(add1 (first vals)))
((eq? name (quote sub1))
(sub1 (first vals)))
((eq? name (quote number?))
(number? (first vals))))))
(define :atom?
(lambda (x)
(cond
((atom? x) #t)
((null? x) #f)
((eq? (car x) 'primitive) #t)
((eq? (car x) 'non-primitive) #t)
(else #f))))
(define apply-closure
(lambda (closure vals)
(meaning (body-of closure)
(extend-table
(new-entry
(formals-of closure) vals)
(table-of closure)))))
(*apply (list 'primitive 'cons) (list 6 (list 7 8)))