-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path21.js
36 lines (27 loc) · 1.12 KB
/
21.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
/*
Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable numbers.
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.
*/
// Probably a better way to do this.
// TODO: Optimize
var findProperDivisors = function(num) {
var sum,
sumOfAmicableNums = 0,
amicableNumbers = [],
sumOfDivisors = new Array(num);
for (var i = 2; i <= num; i++) {
for (var j = i * 2; j < num; j += i) {
sumOfDivisors[j] = sumOfDivisors[j] + i || i + 1;
}
}
for (var k = 0; k < num; k++) {
sum = sumOfDivisors[k];
if (sum && sumOfDivisors[sum] == k && k !== sum) amicableNumbers.push(k);
}
for (var l = 0; l < amicableNumbers.length; l++) sumOfAmicableNums += amicableNumbers[l];
return sumOfAmicableNums;
}
console.log(findProperDivisors(10000));
// 31626