-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathocr_core_og.py
73 lines (57 loc) · 2.19 KB
/
ocr_core_og.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import cv2
import imutils
import numpy as np
import pytesseract
def ocr_core_og(filename):
# Reads the image and resizes it
img = cv2.imread(filename,cv2.IMREAD_COLOR)
img = cv2.resize(img, (600,400) )
# Grayscales
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = cv2.bilateralFilter(gray, 13, 55, 55)
# Binarizes the image
edged = cv2.Canny(gray, 30, 200)
# Grabs the counters using a rectangular box and crops that
contours = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours = imutils.grab_contours(contours)
contours = sorted(contours, key = cv2.contourArea, reverse = True)[:10]
screenCnt = None
# Find all the enclosures, and iterate a for loop to find a rectangular enclosure
for c in contours:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.018 * peri, True)
if len(approx) == 4:
screenCnt = approx
break
if screenCnt is None:
detected = 0
print ("No contour detected")
else:
detected = 1
# Only the number plate is made visible, and rest is masked
if detected == 1:
cv2.drawContours(img, [screenCnt], -1, (0, 0, 255), 3)
mask = np.zeros(gray.shape,np.uint8)
new_image = cv2.drawContours(mask,[screenCnt],0,255,-1,)
new_image = cv2.bitwise_and(img,img,mask=mask)
# The masked area is cropped and individual characters are segmented
(x, y) = np.where(mask == 255)
(topx, topy) = (np.min(x), np.min(y))
(bottomx, bottomy) = (np.max(x), np.max(y))
Cropped = gray[topx:bottomx+1, topy:bottomy+1]
# Pytesseract uses OCR here to recognise these charaters
text = pytesseract.image_to_string(Cropped, config='--psm 11')
img = cv2.resize(img,(500,300))
Cropped = cv2.resize(Cropped,(400,200))
return text
# cv2.imshow('car',img)
# cv2.imshow('Cropped',Cropped)
else:
error_text="Please click a clearer photo"
return error_text
# Closes the program
# cv2.waitKey(0)
# cv2.destroyAllWindows()
# finalanswer=ocr_core_og('007.jpg')
# print(finalanswer)
# print("hi")