forked from relh/gta_perception
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
159 lines (131 loc) · 6.28 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from pathlib import Path
import torch
import csv
from pdb import set_trace
import numpy as np
from tqdm import tqdm
import torch.nn.functional as F
def get_classes_to_label_map():
# Loads the CSV for converting 23 classes to 3 classes
with open('classes.csv', 'r') as class_key:
reader = csv.reader(class_key)
list_mapping = list(reader)[1:]
new_list_mapping = {}
for i, x in enumerate(list_mapping):
new_list_mapping[i] = int(x[-1])
return new_list_mapping
list_mapping = get_classes_to_label_map()
def class_shrinker(inp, target):
new_p_vals = torch.zeros(inp.shape[0], 3).cuda() # TODO hard coded
new_t_vals = target.clone()
for x in range(inp.shape[1]): # For each class currenetly existing
new_p_vals[:, list_mapping[x]] += inp[:, x] # Mapping to the new class
for x in range(inp.shape[0]):
new_t_vals[x] = list_mapping[int(target[x])]
return new_p_vals, new_t_vals
def sum_cross_entropy(inp, target):
new_p_vals, new_t_vals = class_shrinker(inp, target)
return F.cross_entropy(inp, target) + 3.0 * F.cross_entropy(new_p_vals, new_t_vals)
def sum_mse(inp, target):
return F.mse_loss(inp.float(), target.float())
class Runner(object):
cuda = torch.cuda.is_available()
torch.backends.cudnn.benchmark = True
def __init__(self, model, optimizer, loss_f, task, save_dir=None, save_freq=5):
self.model = model
if self.cuda:
model.cuda()
self.optimizer = optimizer
self.loss_f = loss_f
self.save_dir = save_dir
self.save_freq = save_freq
self.epoch = 0
self.best_acc = -100
self.task = task
def _iteration(self, data_loader, batch_size, is_train=True):
loop_loss = []
accuracy = []
accuracy_shrunk = []
outputs = []
outputs_data = []
pbar = tqdm(data_loader, ncols=40, disable=False)
ct = 0
for i, (path, data, target) in enumerate(pbar):
if self.cuda:
data, target = data.cuda(), target.cuda()
output = self.model(data)
# Testing is with batch_size 1
if not is_train:
for p in range(len(path)):
#outputs.append((path[p], int(output.data.max(1)[1][p])))
outputs.append((path[p], output.data[p].cpu().numpy()))
outputs_data.append((path[p], torch.nn.functional.softmax(output.data[p, :]).cpu().numpy()))
loss = self.loss_f(output, target)
loop_loss.append(loss.data.item() / len(data_loader))
if self.task == 2:
accuracy_shrunk.append(((output.data.float() -target.data.float())**2/len(target.data.float())).sum().item())
accuracy.append(((output.data.float() - target.data.float())**2/len(target.data.float())).sum().item())
else:
new_o, new_t = class_shrinker(output.data, target.data)
accuracy_shrunk.append((new_o.max(1)[1] == new_t).sum().item())
accuracy.append((output.data.max(1)[1] == target.data).sum().item())
if is_train:
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# Fetch LR
lr = 0.0
for param_group in self.optimizer.param_groups:
lr = param_group['lr']
# Set Progress bar
if self.task ==2:
pbar.set_description(
"{} epoch {}: itr {:<5}/ {} - loss {:.3f} - error {:.2f} - error3 {:.2f} - lr {:.4f}"
.format('TRAIN' if is_train else 'TEST ', self.epoch, i*batch_size, len(data_loader)*batch_size, loss.data.item(), (sum(accuracy) / ((i+1)*batch_size))*100.0, (sum(accuracy_shrunk) / ((i+1)*batch_size))*100.0, lr))
else:
pbar.set_description(
"{} epoch {}: itr {:<5}/ {} - loss {:.3f} - acc {:.2f}% - acc3 {:.2f}% - lr {:.4f}"
.format('TRAIN' if is_train else 'TEST ', self.epoch, i*batch_size, len(data_loader)*batch_size, loss.data.item(), (sum(accuracy) / ((i+1)*batch_size))*100.0, (sum(accuracy_shrunk) / ((i+1)*batch_size))*100.0, lr))
mode = "train" if is_train else "test/val"
if mode == "test/val":
with open('csvs/test_track.csv', 'a') as f:
f.write(f">>>[{mode}] epoch: {self.epoch} loss: {sum(loop_loss):.2f}/accuracy: {sum(accuracy_shrunk) / len(data_loader.dataset):.2%}\n")
if is_train:
return loop_loss, accuracy_shrunk, None, None
else:
return loop_loss, accuracy_shrunk, outputs, outputs_data
def train(self, data_loader, batch_size):
self.model.train()
with torch.enable_grad():
loss, accuracy, _, _ = self._iteration(data_loader, batch_size)
def test(self, data_loader, batch_size):
self.model.eval()
with torch.no_grad():
loss, accuracy, outputs, logits = self._iteration(data_loader, batch_size, is_train=False)
return loss, accuracy, outputs, logits
def loop(self, epochs, train_data, more_train_data, test_data, scheduler, batch_size):
for ep in range(1, epochs + 1):
self.epoch = ep
print("training one epoch on new data")
self.train(more_train_data, batch_size)
loss, accuracy, outputs, logits = self.test(test_data, batch_size)
if scheduler is not None:
scheduler.step(sum(loss))
self.save(str(ep+99), accuracy)
print("training one epoch on original data")
self.train(train_data, batch_size)
loss, accuracy, outputs, logits = self.test(test_data, batch_size)
if scheduler is not None:
scheduler.step(sum(loss))
self.save(str(ep), accuracy)
return self.best_acc
def save(self, epoch, acc, **kwargs):
if self.save_dir is not None:
model_out_path = Path(self.save_dir)
state = {"epoch": epoch, "weight": self.model.state_dict()}
if not model_out_path.exists():
model_out_path.mkdir()
if self.best_acc < sum(acc):
torch.save(state, model_out_path / "model_epoch_9999.pth")
self.best_acc = sum(acc)
torch.save(state, model_out_path / "model_epoch_{}.pth".format(epoch))