forked from relh/gta_perception
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcarnet.py
508 lines (427 loc) · 21.9 KB
/
carnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
import csv
import os
import pickle
import random
import traceback
from pdb import set_trace
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
from PIL import Image
from skimage import io
from torch import nn
from torch.utils.data import DataLoader, Dataset, random_split
from torchvision import datasets, transforms
import xml.etree.ElementTree as ET
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from utils import Runner, sum_cross_entropy, get_classes_to_label_map, sum_mse, list_mapping
from cnn_finetune import make_model
#pip install dependencies from https://github.com/aleju/imgaug
import imgaug as ia
from imgaug import augmenters as iaa
# print("Building 23 to 3 class mapper...")
# from utils import list_mapping
def add_noise_to_image(image):
sometimes = lambda aug: iaa.Sometimes(0.8, aug)
# Define our sequence of augmentation steps that will be applied to every image.
seq = iaa.Sequential(
[
iaa.SomeOf((0, 5),
[
# Blur each image with varying strength using
# gaussian blur (sigma between 0 and 3.0),
# average/uniform blur (kernel size between 2x2 and 7x7)
# median blur (kernel size between 3x3 and 11x11).
iaa.OneOf([
iaa.GaussianBlur((0, 3.0)),
iaa.AverageBlur(k=(2, 7)),
#iaa.MedianBlur(k=(3, 11)),
]),
# Sharpen each image, overlay the result with the original
# image using an alpha between 0 (no sharpening) and 1
# (full sharpening effect).
# iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)),
# Add gaussian noise to some images.
# In 50% of these cases, the noise is randomly sampled per
# channel and pixel.
# In the other 50% of all cases it is sampled once per
# pixel (i.e. brightness change).
iaa.AdditiveGaussianNoise(
loc=0, scale=(0.0, 0.05*255)# , per_channel=0.5
),
# Either drop randomly 1 to 10% of all pixels (i.e. set
# them to black) or drop them on an image with 2-5% percent
# of the original size, leading to large dropped
# rectangles.
# iaa.OneOf([
# iaa.Dropout((0.05, 0.2), per_channel=0.5),
# iaa.CoarseDropout(
# (0.03, 0.15), size_percent=(0.02, 0.05),
# per_channel=0.2
# ),
# ]),
iaa.CoarseDropout((0, 0.15), size_percent=(0.02, 0.25)),
#iaa.ElasticTransformation(alpha=(2.5, 5.0), sigma=0.25),
iaa.SaltAndPepper(0.15, False),
# Convert each image to grayscale and then overlay the
# result with the original with random alpha. I.e. remove
# colors with varying strengths.
#iaa.Grayscale(alpha=(0.0, 1.0)),
# In some images move pixels locally around (with random
# strengths).
# sometimes(
# iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)
# ),
# In some images distort local areas with varying strength.
# sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05)))
],
# do all of the above augmentations in random order
random_order=True
)
],
# do all of the above augmentations in random order
random_order=True
)
image = (image * 255).astype('uint8')
return ((seq.augment_images(image))/255.0).astype('float64')
def build_image_label_pairs(names, data_path, task, xml=False):
"""This function takes in a set of folders or images 'names' and their root path. It returns a list
of tuples of (image paths, class label) where class label is either 0,1,2 as in classes.csv"""
missing = 0
image_label_pairs = []
if xml:
# Iterative over images
for img in names:
name = img[:-4]
if os.path.exists(os.path.join(data_path,'Annotations',name+'.xml')):
whole_name = os.path.join(data_path,'Annotations',name+'.xml')
e = ET.parse(whole_name).getroot()
class_name = e[5][0].text
else:
#print('annotation for img', img,' does not exist!') # this should never happen!
missing += 1
continue
# Append items to dataset
if task == 2:
class_label = 0
if class_name == 'car':
class_label = 1
elif class_name == 'bus' or class_name == 'motorbike':
class_label = 2
else:
# Index 0 is 23 classes, -1 is 3 classes
class_label = 0
if class_name == 'car':
class_label = np.random.randint(7) + 1 # we're not sure, to reduce bias randomly choose car class
elif class_name == 'motorbike':
class_label = 9
elif class_name == 'bus':
class_label = 12
image_label_pairs.append((os.path.join(data_path,'JPEGImages',img), class_label))
else:
# Iterate over the chosen folders
for folder in names:
for file_name in os.listdir(os.path.join(data_path, folder)):
if ".jpg" in file_name:
# Get the ID for the image
key_id = file_name.split('_')[0]
# Check that the label exist
if os.path.exists(os.path.join(data_path,folder,key_id+'_bbox.bin')):
label_data = np.fromfile(os.path.join(data_path,folder,key_id+'_bbox.bin'), dtype=np.float32)
else:
label_data = [0]*10 # Doesn't exist, must be test, set to 0
# Append items to dataset
if task == 2:
class_label = [int(x) for x in label_data[3:6]]
else:
# Index 0 is 23 classes, -1 is 3 classes
class_label = int(label_data[9])
image_label_pairs.append((os.path.join(data_path,folder,file_name), class_label))
print('Number of missing annotations... {}'.format(missing))
return image_label_pairs
class CarDataset(Dataset):
def __init__(self, image_label_pairs, transforms):
"""This Dataset takes in image and label pairs (tuples) and a list of transformations to apply
and returns tuples of (image_path, transformed_image_tensor, label_tensor)"""
self.image_label_pairs = image_label_pairs
self.transforms = transforms
def __getitem__(self, index):
im_path, im_class = self.image_label_pairs[index]
image_obj = Image.open(im_path) # Open image
transformed_image = self.transforms(image_obj) # Apply transformations
transformed_image.permute(2,0,1) # Swap color channels
#transformed_image_np = transformed_image.numpy()
#transformed_image = torch.tensor(add_noise_to_image(transformed_image.numpy())).float()
return (im_path,
torch.tensor(transformed_image).float(),
torch.from_numpy(np.array(im_class)).long())
def __len__(self):
if len(self.image_label_pairs) > 100000:
return 2000
return len(self.image_label_pairs)
def make_dataloader(names, data_path, batch_size, task, modes, xml=False):
"""This function takes in a list of folders with images in them,
the root directory of these images, and a batchsize and turns them into a dataloader"""
# added flag isTrain - only augment/transform training set, not validation/test set
data_augmentation = [transforms.ColorJitter(brightness=0.2,
contrast=0.2,
saturation=0.2,
hue=0.2),
transforms.RandomHorizontalFlip(),
transforms.RandomAffine(15.0,
translate=(0.1, 0.1),
scale=(0.8,1.2),
shear=15.0,
fillcolor=0)]
# Declare the transforms
preprocessing_transforms = [transforms.Resize((384, 682)),
transforms.ToTensor(),
transforms.Normalize(mean=[.362, .358, .347],
std=[.139, .130, .123])]
# Create the datasets
pairs = build_image_label_pairs(names, data_path, task, xml)
if 'train' in modes.lower():
dataset = CarDataset(pairs, transforms.Compose(data_augmentation + preprocessing_transforms))
# Create the dataloaders
return DataLoader(
dataset,
batch_size=batch_size,
num_workers=int(batch_size/2),
shuffle=True
)
elif 'test' in modes.lower():
dataset = CarDataset(pairs, transforms.Compose(preprocessing_transforms))
# Create the dataloaders
return DataLoader(
dataset,
batch_size=batch_size,
num_workers=int(batch_size/2),
shuffle=False
)
def build_model(args, gpus):
# Build the model to run
print("Building a model...")
if args.task == 1:
#from se_resnet import se_resnet_custom
#model = nn.DataParallel(se_resnet_custom(size=args.model_num_blocks,
# dropout_p=args.dropout_p, num_classes=23),
# device_ids=gpus)
pass # TODO make model here
elif args.task == 2:
# TODO make this use MSE and have 3 heads, one for X,Y,Z
model = make_model(args.model, num_classes=3, dropout_p=args.dropout_p, pretrained=True)
elif args.task == 3 or args.task == 4:
model = make_model(args.model, num_classes=23, dropout_p=args.dropout_p, pretrained=True)
#model = make_model('resnet18', num_classes=23, dropout_p=args.dropout_p, pretrained=True)
#model = make_model('resnext101_32x4d', num_classes=23, dropout_p=args.dropout_p, pretrained=True)
return model
def load_model(args, model, load_epoch):
# Load an existing model, be careful with train/validation
if load_epoch > 0:
print("Loading a model...")
existing_models = os.listdir(args.load_dir)
model_to_load = "model_epoch_{}.pth".format(str(load_epoch))
if model_to_load not in existing_models:
print("Load Epoch Not Found!!!")
model_to_load = random.choice(existing_models)
details = torch.load(args.load_dir + "/" + model_to_load)
# Saving models can be weird, so be careful using these
new_details = dict([(k, v) for k, v in details['weight'].items()])
model.load_state_dict(new_details)
return model
def main(args):
"""This major function controls finding data, splitting train and validation data, building datasets,
building dataloaders, building a model, loading a model, training a model, testing a model, and writing
a submission"""
best_acc = 0
# Specify the GPUs to use
print("Finding GPUs...")
gpus = list(range(torch.cuda.device_count()))
print('--- GPUS: {} ---'.format(str(gpus)))
if "train" in args.modes.lower():
# List the trainval folders
print("Load trainval data...")
trainval_folder_names = [x for x in os.listdir(args.trainval_data_path)
if os.path.isdir(os.path.join(args.trainval_data_path, x))]
more_train_img_names = [x for x in os.listdir(os.path.join(args.more_train_data_path, 'JPEGImages'))]
# Figure out how many folders to use for training and validation
num_train_folders = int(len(trainval_folder_names) * args.trainval_split_percentage)
num_more_train_imgs = len(more_train_img_names)
num_val_folders = len(trainval_folder_names) - num_train_folders
print("Building dataset split...")
print("--- Number of train folders: {} ---".format(num_train_folders))
print("--- Number of additional train images: {} ---".format(num_more_train_imgs))
print("--- Number of val folders: {} ---".format(num_val_folders))
# Choose the training and validation folders
random.shuffle(trainval_folder_names) # TODO if loading a model, be careful
train_folder_names = trainval_folder_names[:num_train_folders]
val_folder_names = trainval_folder_names[num_train_folders:]
# Make dataloaders
print("Making train and val dataloaders...")
train_loader = make_dataloader(train_folder_names, args.trainval_data_path, args.batch_size, args.task, args.modes)
more_train_loader = make_dataloader(more_train_img_names, args.more_train_data_path, args.batch_size, args.task, args.modes, xml=True)
val_loader = make_dataloader(val_folder_names, args.trainval_data_path, args.batch_size, args.task, args.modes)
# Build and load the model
model = build_model(args, gpus)
model = load_model(args, model, args.load_epoch)
# Declare the optimizer, learning rate scheduler, and training loops. Note that models are saved to the current directory.
print("Creating optimizer and scheduler...")
if args.task == 4:
if args.optimizer_string == 'RMSprop':
optimizer = optim.RMSprop(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
elif args.optimizer_string == 'Adam':
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
elif args.optimizer_string == 'SGD':
optimizer = optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
elif args.optimizer_string == 'Adagrad':
optimizer = optim.Adagrad(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
elif args.optimizer_string == 'Adadelta':
optimizer = optim.Adadelta(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
else:
optimizer = optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.3, patience=10, verbose=True)
else:
optimizer = optim.Adam(params=model.parameters(), lr=args.lr, weight_decay=args.weight_decay, amsgrad=True)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.5, patience=5, verbose=True)
# This trainer class does all the work
print("Instantiating runner...")
if args.task == 2:
runner = Runner(model, optimizer, sum_mse, args.task, args.save_dir)
else:
runner = Runner(model, optimizer, sum_cross_entropy, args.task, args.save_dir)
best_acc = 0
if "train" in args.modes.lower():
print("Begin training... {}, lr:{} + wd:{} + opt:{} + bs:{} "
.format(str(args.model), str(args.lr), str(args.weight_decay), str(args.optimizer_string), str(args.batch_size)))
best_acc = runner.loop(args.num_epoch, train_loader, more_train_loader, val_loader, scheduler, args.batch_size)
args.save_path = save_path = args.save_dir.split('/')[-1] + '-' + args.model + '-' + str(best_acc) + '-' + str(args.lr) + '-' + str(args.weight_decay) + '-' + str(args.optimizer_string) + '-' + str(args.batch_size)
if "test" in args.modes.lower():
print("Load test data...")
# Get test folder names
test_folder_names = [x for x in os.listdir(args.test_data_path)
if os.path.isdir(os.path.join(args.test_data_path, x))]
# Switch to eval mode
model = build_model(args, gpus)
model = load_model(args, model, 9999)
model.eval()
# Make test dataloader
print("Making test dataloaders...")
test_loader = make_dataloader(test_folder_names, args.test_data_path, args.batch_size, args.task, 'test')
# Run the dataloader through the neural network
print("Conducting a test...")
_, _, outputs, logits = runner.test(test_loader, args.batch_size)
# Write the submission to CSV
print("Writing a submission to \"csvs/{}.csv\"...".format(save_path))
if args.task == 2:
with open('csvs/'+save_path+'.csv', 'w') as sub:
sub.write('guid/image/axis,value\n')
for name, val in outputs:
# Build path
mod_name = name.split('/')[5] + '/' + name.split('/')[6].split('_')[0]
x = val[0]
y = val[1]
z = val[2]
# Print and write row
sub.write(mod_name + '/x,' + str(x) + '\n')
sub.write(mod_name + '/y,' + str(y) + '\n')
sub.write(mod_name + '/z,' + str(z) + '\n')
np.save('logits/'+save_path+'.npy', np.array([l for p,l in logits]))
else:
print("writing a submission to \"csvs/{}.csv\"...".format(save_path))
with open('csvs/'+save_path+'.csv', 'w') as sub:
sub.write('guid/image,label\n')
for name, val in outputs:
# Build path
mod_name = name.split('/')[4] + '/' + name.split('/')[5].split('_')[0]
mod_val = int(list_mapping[int(np.argmax(val))])
# Print and write row
sub.write(mod_name + ',' + str(mod_val) + '\n')
np.save('logits/'+save_path+'.npy', np.array([l for p,l in logits]))
# TODO average multiple logits results
# This function loads these logits but they should be reshaped with .reshape(-1, 23)
# test_logits = np.load('logits/'+save_path+'.npy')
#print("0s: {}".format(str(np.count_nonzero(test_logits == 0.0))))
#print("1s: {}".format(str(np.count_nonzero(test_logits == 1.0))))
#print("2s: {}".format(str(np.count_nonzero(test_logits == 2.0))))
print('Done!')
if __name__ == '__main__':
"""This block parses command line arguments and runs the training/testing main block"""
print("Parsing arguments...")
import argparse
p = argparse.ArgumentParser()
p.add_argument("--trainval_data_path", default='/home/ubuntu/trainval/', type=str, help="carnet trainval data_path")
p.add_argument("--more_train_data_path", default='/home/ubuntu/more_train/', type=str, help="more train data_path")
p.add_argument("--test_data_path", default='/home/ubuntu/test/', type=str, help="carnet test data_path")
p.add_argument("--trainval_split_percentage", default=0.90, type=float, help="percentage of data to use in training")
# Increasing these adds regularization
p.add_argument("--batch_size", default=15, type=int, help="batch size")
p.add_argument("--dropout_p", default=0.35, type=float, help="final layer p of neurons to drop")
p.add_argument("--weight_decay", default=8e-2, type=float, help="weight decay")
# Increasing this increases model ability
p.add_argument("--lr", default=1e-4, type=float, help="learning rate")
p.add_argument("--momentum", default=0.9, type=float, help="momentum value")
p.add_argument("--save_dir", default='models/v901', type=str, help="what model dir to save")
p.add_argument("--load_dir", default='models/v901', type=str, help="what model dir to load")
p.add_argument("--load_epoch", default=-1, type=int, help="what epoch to load, -1 for none")
p.add_argument("--num_epoch", default=16, type=int, help="number of epochs to train")
p.add_argument("--modes", default='|Test', type=str, help="string containing modes")
p.add_argument("--task", default=4, type=int, help="what task to train a model, or pretrained model")
p.add_argument("--model", default='inception_v4', type=str, help="what pretrained model to start with")
p.add_argument("--optimizer_string", default='Adam', type=str, help="what optimizer string")
args = p.parse_args()
main(args)
'''
# Output rewriting
for f in os.listdir('./csvs/'):
if len(f.split('-')) < 2 or 'DEFAULT' in f:
continue
args.model = f.split('-')[1]
args.batch_size = 5
args.load_dir = '/hdd/models/'+f.split('-')[0]
args.load_epoch = 9999
args.save_dir = 'models/'+f.split('-')[0]
print(f)
print(args.model)
try:
main(args)
except Exception as e:
print('Oops failed!')
traceback.print_exc()
# Random model search
model_list = ['resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152',
'densenet121', 'densenet169', 'densenet201', 'densenet161',
'inception_v3',
'alexnet', 'xception'
'nasnetalarge',
'nasnetamobile', 'pnasnet5large',
'inceptionresnetv2', 'polynet']
#'dpn68', 'dpn68b', 'dpn92', 'dpn98', 'dpn131', 'dpn107']
main(args)
# for i in range(100):
# args.save_dir = 'models/v' + str(210 + i)
# args.load_dir = 'models/v' + str(210 + i)
# args.batch_size = 5 # To be not that safe
# args.model = random.choice(model_list)
# try:
# main(args)
# except Exception as e:
# print('Oops failed!')
# traceback.print_exc()
for i in range(100):
args.save_dir = 'models/v' + str(505 + i)
args.load_dir = 'models/v' + str(505 + i)
args.batch_size = 10 # To be not that safe
# Random search
args.model = random.choice(model_list)
args.lr = random.choice([1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 5e-2, 2e-2])
args.weight_decay = random.choice([0, 0, 0, 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 5e-2, 2e-2, 1e-1])
args.optimizer_string = random.choice(['SGD', 'Adam', 'RMSprop', 'Adagrad', 'Adadelta'])
args.batch_size = random.choice([10,12,14,16,18,20,25])
try:
main(args)
except Exception as e:
print('Oops failed!')
traceback.print_exc()
'''