-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchromosome.py
80 lines (64 loc) · 3.17 KB
/
chromosome.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import random
from environment import Environment
from math import sqrt
class Chromosome:
def __init__(self, mut_prob, recomb_prob, min_force, max_force, game_state, parameters, calc_fitness):
self.action = [] # [player_id, angle, force]
self.mut_prob = mut_prob
self.recomb_prob = recomb_prob
self.fitness = 0
self.max_force = max_force
self.min_force = min_force
self.game_state = game_state
self.calc_fitness = calc_fitness
self.parameters = parameters
self.init_chromosome()
def init_chromosome(self):
player_id = random.randint(1, 5)
angle = random.uniform(0, 360)
force = random.uniform(self.min_force, self.max_force)
self.action.append(player_id)
self.action.append(angle)
self.action.append(force)
if self.calc_fitness:
self.calculate_fitness()
def mutation(self):
prob = random.uniform(0, 1)
if prob <= self.mut_prob:
self.action[0] = random.randint(1, 5)
prob = random.uniform(0, 1)
if prob <= self.mut_prob:
add_deg = random.uniform(-10, 10)
new_deg = self.action[1] + add_deg
self.action[1] = min(max(0, new_deg), 360)
prob = random.uniform(0, 1)
if prob <= self.mut_prob:
add_force = random.uniform(-200, 200)
new_force = self.action[2] + add_force
self.action[2] = min(max(self.min_force, new_force), self.max_force)
self.calculate_fitness()
@staticmethod
def calculate_distance_to_goal(ball_position, goal_start, goal_end):
x, y = ball_position[0], ball_position[1]
x1, y1 = goal_start[0], goal_start[1]
x2, y2 = goal_end[0], goal_end[1]
distance = abs((y2 - y1) * x - (x2 - x1) * y + x2 * y1 - y2 * x1) / sqrt((y2 - y1)**2 + (x2 - x1)**2)
return distance
def calculate_fitness(self):
player_id, angle, force = self.action[0], self.action[1], self.action[2]
player_radius, player_mass, player_elasticity, ball_radius, ball_mass, ball_elasticity, walls_thickness, walls_elasticity, max_force, _, _ = self.parameters
env = Environment(self.game_state, player_radius, player_mass, player_elasticity, ball_radius, ball_mass, ball_elasticity, walls_thickness, walls_elasticity, max_force)
env.simulate()
Environment.shoot(env.players_shapes[player_id-1], round(angle), round(force))
for _ in range(500):
env.space.step(1 / 120)
if env.check_player_goal_scored() is True:
self.fitness = 100
elif env.check_opponent_goal_scored() is True:
self.fitness = -10000 # Very low value for opponent's goal
else:
ball_position = env.soccer_ball_shape.body.position
opponent_goal_start = (env.opponent_goal_position[0], env.opponent_goal_position[1])
opponent_goal_end = (env.opponent_goal_position[0], env.opponent_goal_position[1] - env.opponent_goal_position[3])
distance_to_goal = Chromosome.calculate_distance_to_goal(ball_position, opponent_goal_start, opponent_goal_end)
self.fitness = -distance_to_goal