You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
(optional) I have confirmed this bug exists on the master branch of pandas.
Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.
Code Sample, a copy-pastable example
# Your code hereimportpandasaspddf=pd.DataFrame([[1,2,3],[1,4,5],[2,3,4]],columns=['a','b','c'])
grouped=df.groupby('a')
print("GROUPED:")
print(grouped) #prints pandas.core.groupby.generic.DataFrameGroupBy no frame...grpA=grouped.apply(lambdagrp: grp[:])
print('GROUPED A:')
print(grpA) #prints grouped df.grpB=grouped.apply(lambdagrp: grp)
print('GROUPED B:')
print(grpB) #doesn't print grouped df just prints the normal df.
Current Output
GROUPED:
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x1205a1a90>
GROUPED A:
a b c
a
1 0 1 2 3
1 1 4 5
2 2 2 3 4
GROUPED B:
a b c
0 1 2 3
1 1 4 5
2 2 3 4
Problem description
Why is they print(grouped) not working ?
Also why is there different output for grpA, grpB : grpA get's nicely grouped while grbB just prints the orginal df.
shouldn't df[:] and df be the same as I have used in apply function , why are they producing different output?
Expected Output
GROUPED:
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x1205a1a90>
GROUPED A:
a b c
a
1 0 1 2 3
1 1 4 5
2 2 2 3 4
GROUPED B:
a b c
a
1 0 1 2 3
1 1 4 5
2 2 2 3 4
Output of pd.show_versions()
INSTALLED VERSIONS
commit : 67a3d42
python : 3.7.7.final.0
python-bits : 64
OS : Darwin
OS-release : 20.1.0
Version : Darwin Kernel Version 20.1.0: Sat Oct 31 00:07:11 PDT 2020; root:xnu-7195.50.7~2/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.UTF-8
Hi, thanks for your report. This is not a bug. The DataFrameGroupBy object has no real __repr__ method. You could maybe relabel your issue to a featur request?
It is fine that __repr__ is not implemented , my issue is with the apply function, why are there two different outputs for the same lambda fn with just different syntax...
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
(optional) I have confirmed this bug exists on the master branch of pandas.
Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.
Code Sample, a copy-pastable example
Current Output
GROUPED:
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x1205a1a90>
GROUPED A:
a b c
a
1 0 1 2 3
1 1 4 5
2 2 2 3 4
GROUPED B:
a b c
0 1 2 3
1 1 4 5
2 2 3 4
Problem description
Why is they print(grouped) not working ?
Also why is there different output for grpA, grpB : grpA get's nicely grouped while grbB just prints the orginal df.
shouldn't df[:] and df be the same as I have used in apply function , why are they producing different output?
Expected Output
GROUPED:
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x1205a1a90>
GROUPED A:
a b c
a
1 0 1 2 3
1 1 4 5
2 2 2 3 4
GROUPED B:
a b c
a
1 0 1 2 3
1 1 4 5
2 2 2 3 4
Output of
pd.show_versions()
INSTALLED VERSIONS
commit : 67a3d42
python : 3.7.7.final.0
python-bits : 64
OS : Darwin
OS-release : 20.1.0
Version : Darwin Kernel Version 20.1.0: Sat Oct 31 00:07:11 PDT 2020; root:xnu-7195.50.7~2/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.UTF-8
pandas : 1.1.4
numpy : 1.19.4
pytz : 2020.4
dateutil : 2.8.1
pip : 19.2.3
setuptools : 41.2.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.19.0
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : 3.3.3
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None
The text was updated successfully, but these errors were encountered: