BUG: pd.NA acts differently when inside/outside a series/dataframe with object dtype #33066
Labels
Bug
Dtype Conversions
Unexpected or buggy dtype conversions
NA - MaskedArrays
Related to pd.NA and nullable extension arrays
Code Sample, a copy-pastable example if possible
Problem description
pd.NA acts differently when inside/outside a series/dataframe may be confusing. It force me to handle each entry of a series/dataframe.
Expected Output
Output of
pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.8.1.final.0
python-bits : 64
OS : Linux
OS-release : 4.15.0-91-generic
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : en_US.UTF-8
LANG : en_US.UTF-8
LOCALE : None.None
pandas : 1.0.1
numpy : 1.18.1
pytz : 2019.3
dateutil : 2.8.1
pip : 20.0.2
setuptools : 45.2.0
Cython : None
pytest : 5.3.5
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.1
IPython : 7.12.0
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : 3.2.0
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pytest : 5.3.5
pyxlsb : None
s3fs : None
scipy : 1.4.1
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
numba : None
The text was updated successfully, but these errors were encountered: