ExtensionBlock.is_numeric is always False #22290
Labels
ExtensionArray
Extending pandas with custom dtypes or arrays.
Numeric Operations
Arithmetic, Comparison, and Logical operations
Milestone
Code Sample/Problem Description
Currently
ExtensionBlock.is_numeric
always returnsFalse
. This can be problematic for extension arrays that are numeric, as this is used under the hood in places to filter to numeric columns in aDataFrame
. I'll be usingIntegerArray
as an example, but this in principle applies to any numeric extension array, e.g.DecimalArray
in the testing suite, an extension array for units/uncertainties, etc.Setup:
The
IntegerArray
column is ignored byDataFrame._get_numeric_data()
:This leads some numeric routines, such as
DataFrame.corr
ignoring theIntegerArray
column:Likewise,
groupby
usesExtensionBlock.is_numeric
to filter to numeric columns for some operations, leading to theIntegerArray
column being ignored, even if explicitly requested:Expected Output
I'd expect
ExtensionBlock.is_numeric
to returnTrue
when appropriate, and for behavior to be consistent with non-extension numeric dtypes.My first impression is that this should be an attribute of the
ExtensionArray
orExtensionDtype
class that defaults toFalse
, with numeric implementations setting the attribute toTrue
, andExtensionBlock.is_numeric
would read the value from there.Output of
pd.show_versions()
INSTALLED VERSIONS
commit: 0370740
python: 3.6.5.final.0
python-bits: 64
OS: Linux
OS-release: 4.14.29-galliumos
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
pandas: 0.24.0.dev0+456.g0370740
pytest: 3.5.1
pip: 10.0.1
setuptools: 39.1.0
Cython: 0.28.2
numpy: 1.14.3
scipy: 1.1.0
pyarrow: None
xarray: None
IPython: 6.4.0
sphinx: 1.7.4
patsy: 0.5.0
dateutil: 2.7.3
pytz: 2018.4
blosc: None
bottleneck: 1.2.1
tables: 3.4.3
numexpr: 2.6.5
feather: None
matplotlib: 2.2.2
openpyxl: 2.5.3
xlrd: 1.1.0
xlwt: 1.3.0
xlsxwriter: 1.0.4
lxml: 4.2.1
bs4: 4.6.0
html5lib: 1.0.1
sqlalchemy: 1.2.7
pymysql: None
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None
gcsfs: None
The text was updated successfully, but these errors were encountered: