forked from SXUNLP/Chinese-Frame-Semantic-Parsing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_rc.py
444 lines (386 loc) · 18.4 KB
/
run_rc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
from accelerate import Accelerator
from accelerate.utils import set_seed
from arguments import parse_args
from dataset import FrameRCDataset
import logging
import math
from model import BertForFrameSRL
from transformers import DataCollatorWithPadding
import os
# from predict import post_process_function_greedy, calculate_F1_metric, post_process_function_with_max_len, save_predictions
import torch
from torch.optim import AdamW
from torch.utils.data import DataLoader
# from tqdm import tqdm
import transformers
from transformers import BertConfig, BertTokenizerFast, get_scheduler
import json
import evaluate
logger = logging.getLogger(__name__)
def Predict(args, accelerator, model, eval_dataset, eval_dataloader, fe2id):
id2fe = {v: k for k, v in fe2id.items()}
# Evaluation
logger.info("***** Running Prediction *****")
logger.info(f" Num examples = {len(eval_dataset)}")
logger.info(f" Batch size = {args.per_device_eval_batch_size}")
model.eval()
all_predictions = []
all_labels = []
all_spans = []
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
length = batch.pop('length')
# word_ids = batch.pop('word_ids')
task_id = batch.pop('task_id')
labels = batch.pop('labels')
outputs = model(**batch)
logits = outputs.logits
task_id = task_id.cpu().numpy().tolist()
# word_ids = word_ids.cpu().numpy().tolist()
predictions = torch.argmax(logits, dim=-2).cpu().numpy().tolist() # (B, 16)
span_token_idx = batch['span_token_idx'].cpu().numpy().tolist() # (B, 16, 2)
# print(task_id)
# print(span_token_idx)
# print(predictions)
# labels = batch['labels'].cpu().numpy().tolist()
# true_labels = [[label_names[l] for l in label if l != -100] for label in labels]
true_predictions = [
[id2fe[p] for (p, span) in zip(prediction, span_token) if span[0] != 0]
for prediction, span_token in zip(predictions, span_token_idx)
]
# all_spans = []
for tid, pred in zip(task_id, true_predictions):
tid = tid[0]
spans = []
for p in pred:
spans.append([tid, p])
all_spans += spans
# precision = .0
# recall = .0
# F1 = (2 * precision * recall) / (precision + recall + 1e-12)
# all_metrics = metric.compute(predictions=all_predictions, references=all_labels)
# precision = all_metrics['overall_precision']
# recall = all_metrics['overall_recall']
# F1 = all_metrics['overall_f1']
with open('./ccl-cfn/result/task2_test.json', 'r') as f:
all_spans_no_label = json.load(f)
for s, s_ in zip(all_spans, all_spans_no_label):
try:
assert s[0] == s_[0]
except:
print(s, s_)
exit(0)
s_.append(s[1])
with open('./ccl-cfn/result/task3_test.json', 'w') as f:
json.dump(all_spans_no_label, f, ensure_ascii=False)
return
def Evaluate(args, accelerator, model, eval_dataset, eval_dataloader, metric):
# label_names = ['O', 'B', 'I']
# Evaluation
logger.info("***** Running Evaluation *****")
logger.info(f" Num examples = {len(eval_dataset)}")
logger.info(f" Batch size = {args.per_device_eval_batch_size}")
model.eval()
all_predictions = []
all_labels = []
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
length = batch.pop('length')
# word_ids = batch.pop('word_ids')
task_id = batch.pop('task_id')
outputs = model(**batch)
logits = outputs.logits
predictions = torch.argmax(logits, dim=-2).cpu().numpy().tolist()
labels = batch['labels'].cpu().numpy().tolist()
true_labels = [[l for l in label if l != -100] for label in labels]
true_predictions = [
[p for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
for tp in true_predictions:
all_predictions += tp
# all_predictions += true_predictions
for tl in true_labels:
all_labels += tl
# all_labels += true_labels
# precision = .0
# recall = .0
# F1 = (2 * precision * recall) / (precision + recall + 1e-12)
all_metrics = metric.compute(predictions=all_predictions, references=all_labels)
acc = all_metrics['accuracy']
# recall = all_metrics['overall_recall']
# F1 = all_metrics['overall_f1']
return acc
def train(args, accelerator, model, train_dataset, train_dataloader, optimizer, lr_scheduler, eval_dataset, eval_dataloader, tokenizer):
# Figure out how many steps we should save the Accelerator states
if hasattr(args.checkpointing_steps, "isdigit"):
checkpointing_steps = args.checkpointing_steps
if args.checkpointing_steps.isdigit():
checkpointing_steps = int(args.checkpointing_steps)
else:
checkpointing_steps = None
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
# progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
starting_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}")
accelerator.load_state(args.resume_from_checkpoint)
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Extract `epoch_{i}` or `step_{i}`
training_difference = os.path.splitext(path)[0]
if "epoch" in training_difference:
starting_epoch = int(training_difference.replace("epoch_", "")) + 1
resume_step = None
else:
resume_step = int(training_difference.replace("step_", ""))
starting_epoch = resume_step // len(train_dataloader)
resume_step -= starting_epoch * len(train_dataloader)
if args.save_best:
best_acc = -1
metric = evaluate.load('accuracy')
for epoch in range(starting_epoch, args.num_train_epochs):
model.train()
total_loss = 0
for step, batch in enumerate(train_dataloader):
# We need to skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == starting_epoch:
if resume_step is not None and step < resume_step:
completed_steps += 1
continue
length = batch.pop('length')
# if not args.loss_on_context:
# context_length = batch.pop('context_length')
# word_ids = batch.pop('word_ids')
# FE_num = batch.pop('FE_num')
task_id = batch.pop('task_id')
# gt_FE_word_idx = batch.pop('gt_FE_word_idx')
# gt_start_positions = batch.pop('gt_start_positions')
# gt_end_positions = batch.pop('gt_end_positions')
# FE_core_pts = batch.pop('FE_core_pts')
try:
outputs = model(**batch)
except:
for k, v in batch.items():
print(k, v.shape, v)
loss = outputs.loss
# We keep track of the loss at each epoch
total_loss += loss.detach().float()
if args.log_every_step is not None and step % args.log_every_step == 0:
logger.info(f" | batch loss: {loss.detach().float():.6f} step = {step}")
# if args.with_tracking:
# total_loss += loss.detach().float()
# if args.log_every_step is not None and step % args.log_every_step == 0:
# logger.info(f" | batch loss: {loss.detach().float():.6f} step = {step}")
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# progress_bar.update(1)
completed_steps += 1
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
output_dir = f"step_{completed_steps }"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
if completed_steps >= args.max_train_steps:
break
# if args.with_tracking:
# logger.info(f" Epoch Loss {total_loss:.6f}")
logger.info(f" Epoch Loss {total_loss:.6f}")
acc = Evaluate(args, accelerator, model, eval_dataset, eval_dataloader, metric)
logger.info(f" Accuracy {acc:.6f}")
# logger.info(f" TP: {total_TP} FP: {total_FP} FN: {total_FN}")
if args.with_tracking:
log = {
"train_loss": total_loss,
"step": completed_steps,
"acc": acc,
}
accelerator.log(log)
if args.checkpointing_steps == "epoch":
output_dir = f"epoch_{epoch}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
if args.output_dir is not None:
# print(f'best {best_F1} current {F1}')
if args.save_best:
if best_acc <= acc:
best_Facc = acc
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
)
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
else:
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
)
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
def main():
args = parse_args()
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
# If we're using tracking, we also need to initialize it here and it will pick up all supported trackers in the environment
accelerator = Accelerator(log_with="all", logging_dir=args.output_dir) if args.with_tracking else Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
# datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
# datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
if accelerator.is_main_process and args.output_dir is not None and not os.path.exists(args.output_dir):
os.mkdir(args.output_dir)
accelerator.wait_for_everyone()
data_files = {}
if args.train_file is not None:
data_files["train"] = args.train_file
if args.validation_file is not None:
data_files["validation"] = args.validation_file
if args.test_file is not None:
data_files["test"] = args.test_file
if args.config_name:
config = BertConfig.from_pretrained(args.config_name)
elif args.model_name_or_path:
config = BertConfig.from_pretrained(args.model_name_or_path)
config.update({'FE_pooling':args.FE_pooling})
if args.tokenizer_name:
tokenizer = BertTokenizerFast.from_pretrained(args.tokenizer_name, use_fast=True)
elif args.model_name_or_path:
tokenizer = BertTokenizerFast.from_pretrained(args.model_name_or_path, use_fast=True)
tokenizer.add_tokens(['<t>', '</t>', '<f>', '</f>', '<a>', '</a>'])
with open(args.frame_data, 'r') as f:
data = json.load(f)
fe2id = {}
cnt = 0
for frame in data:
for fe in frame['fes']:
name = fe['fe_name']
if name not in fe2id:
fe2id[name] = cnt
cnt += 1
config.num_labels = len(fe2id)
if args.model_name_or_path:
model = BertForFrameSRL.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
)
else:
logger.info("Training new model from scratch")
model = BertForFrameSRL.from_config(config)
model.resize_token_embeddings(len(tokenizer))
# frame_data = {}
# with open('./ccl-cfn/frame_data_def.json', 'r') as f:
# frame_lines = json.load(f)
# for line in frame_lines:
# frame_data[line["frame_name"]] = line
if "train" not in data_files:
raise ValueError("--do_train requires a train dataset")
with accelerator.main_process_first():
train_dataset = FrameRCDataset(data_files['train'], tokenizer, fe2id)
if args.max_train_samples is not None:
train_dataset = train_dataset.subset(range(args.max_train_samples))
if "validation" not in data_files:
raise ValueError("--do_train requires a train dataset")
with accelerator.main_process_first():
eval_dataset = FrameRCDataset(data_files['validation'], tokenizer, fe2id)
if args.max_eval_samples is not None:
eval_dataset = eval_dataset.subset(range(args.max_eval_samples))
if args.do_predict:
test_dataset = FrameRCDataset(data_files['test'], tokenizer, fe2id, args.task1_res, args.task2_res)
if args.max_predict_samples is not None:
test_dataset = test_dataset.subset(range(args.max_predict_samples))
# data_collator = DataCollatorForFrameAI(tokenizer=tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None))
data_collator = DataCollatorWithPadding(tokenizer=tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None))
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size
)
eval_dataloader = DataLoader(
eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
)
test_dataloader = DataLoader(
test_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
else:
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,
)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("FrameSRL", experiment_config)
# evaluate(args, accelerator, model, eval_dataset, eval_dataloader)
train(args, accelerator, model, train_dataset, train_dataloader, optimizer, lr_scheduler, eval_dataset, eval_dataloader, tokenizer)
if args.do_predict:
model = BertForFrameSRL.from_pretrained(
args.output_dir,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
)
model, test_dataloader = accelerator.prepare(model, test_dataloader)
Predict(args, accelerator, model, test_dataset, test_dataloader, fe2id)
if __name__ == '__main__':
main()