-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimarkov-grid-maxlikelihood.jl
155 lines (127 loc) · 5.4 KB
/
imarkov-grid-maxlikelihood.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
########
#WORLD (GENERATIVE: MAX LIKELYHOOOD): as a Markov Decision Process
# NOTE: this world is completely observable. Transition() and Reward() functions are determined from the dataset
########
using POMDPs
# importall POMDPs
using RDatasets, DataFrames
########
# WORLD TUPLE: (STATE, ACTION, TRANSITION, REWARD)
# NOTE: can be run in two modes
# a) DETERMINISTIC mode, see sister notebook: given Transition and Rewards probability functions. See Decisions Under Uncertainty 4.2.5
# *(b) MAX LIKELIHOOD modes, in this notebook: estimated Transition and Reward probability functions. See Decisions Under Uncertainty 5.2
########
using POMDPs
# importall POMDPs
### STATE (MAX LIKELIHOOD): class, with objects/values estimated from the dataset
struct MaxlikelihoodState
x::Int64 # x position
y::Int64 # y position
done::Bool # are we in a terminal state?
end
### ACTION (MAX LIKELIHOOD): class, with objects/values estimated from the dataset
# 1:left, 2:right, 3:up, 4:down
gridMaxlikelihoodActions = [:left, :right, :up, :down];
### WORLD (DETERMINISTIC): class
# grid mdp extends MDP{}
type MaxlikelihoodGrid <: MDP{MaxlikelihoodState, Symbol} # MDP{StateType, ActionType} is parametrized by the State and the Action
size_x::Int64 # x size of the grid
size_y::Int64 # y size of the grid
discount_factor::Float64 # disocunt factor
data::DataFrame # loaded from file, as sampled
end
### TRANSITION (MAX LIKELIHOOD): Transition() determined from the dataset
# Return a distribution of neighbors, and a distribution of their associated probabilities
# https://github.com/JuliaStats/Distributions.jl/blob/master/src/multivariate/dirichletmultinomial.jl
# SparseCat(values,probabilities): sparse categorical distribution. https://github.com/JuliaPOMDP/POMDPToolbox.jl/blob/master/src/distributions/sparse_cat.jl
function maxLikelihoodTransitionModel(mdp::MaxlikelihoodGrid, state::MaxlikelihoodState, action::Symbol)
mdp.dataset
if isDone(state,mdp)
return SparseCat([MaxlikelihoodState(state.x, state.y, true)], [1.0])
end
stateDistribution = MaxlikelihoodState[]
probabilityDistribution = Float64[]
actionIndexDict = getActionsIndexDict()
neighborsDict = getNextCoordinatesDictionary(state)
@printf("==> AT %s ACTION %s HAS: \n\t DISTRIBUTION OF STATES IS %s \n\t PROBABILITY DISTRIBUTION IS %s \n", state, action, stateDistribution, probabilityDistribution)
return SparseCat(stateDistribution, probabilityDistribution)
end
### REWARD (MAX LIKELIHOOD): determined from the dataset
# add reward if state_now is in reward states
function getReward(reward_states, reward_values, state_now::MaxlikelihoodState)
reward = 0.0
if state_now.done
reward = 0.0
end
for i = 1:length(reward_states)
if isSamePosition(state_now, reward_states[i])
reward += reward_values[i]
end
end
return reward
end
### WORLD (MAX LIKELIHOOD): factory
# class constructor with default values
function MaxlikelihoodGrid(;sx::Int64=10, # size_x
sy::Int64=10, # size_y
discount_factor::Float64=0.9, # discount factor
data::DataFrame=dataframe) # as loaded from file: default none
return MaxlikelihoodGrid(sx, sy, discount_factor, data)
end
### STATE: DONE
# implement POMDPs.isterminal
function isMaxlikelihoodTerminal(mdp::MaxlikelihoodGrid, state::MaxlikelihoodState)
# TODO
# return isMaxlikelihoodTerminal(mdp, state)
return 1
end
### STATE: define
# implement POMDPs.states
function getMaxlikelihoodStateSpace(mdp::MaxlikelihoodGrid)
# TODO
# return getMaxlikelihoodStateSpace(mdp)
return 1
end
### STATE: index
# implement POMDPs.state_index
function getMaxlikelihoodStateIndex(mdp::MaxlikelihoodGrid, state::MaxlikelihoodState)
# TODO
# return getMaxlikelihoodStateIndex(mdp,state)
return 1
end
### STATE: count
# implement POMDPs.n_states
function getMaxlikelihoodNumberOfStates(mdp::MaxlikelihoodGrid)
# TODO
# return getMaxlikelihoodNumberOfStates(mdp)
return 1
end
### DISCOUNT (Maxlikelihood):
# implement POMDPs.discount
function getMaxlikelihoodDiscountFactor(mdp::MaxlikelihoodGrid)
# TODO
# return getMaxlikelihoodDiscountFactor(mdp)
return 1
end
### ACTION: index
# POMDPs.action_index
function getMaxlikelihoodActionsIndexDict(mdp::MaxlikelihoodGrid, act::Symbol)
# TODO
# actionIndex = getMaxlikelihoodActionsIndexDict()
# return actionIndex[act]
return 1
end
### TRANSITION: configure the transition model
# implement POMDPs.transition
function MaxlikelihoodTransitionModel(mdp::MaxlikelihoodGrid, state::MaxlikelihoodState, action::Symbol)
# TODO
# return MaxlikelihoodTransitionModel(mdp, state, action)
return 1
end
### REWARD: utility of a (state,action,statePrime) datapoint in a world
# implement POMDPs.reward
function getMaxlikelihoodReward(mdp::MaxlikelihoodGrid, state::MaxlikelihoodState, action::Symbol, statePrime::MaxlikelihoodState)
# TODO
# return getMaxlikelihoodReward(mdp.reward_states, mdp.reward_values, state)
return 1
end