To sign message
-
Compute
$h=H(L)$ and$\sigma_s=h^{x_s}$ , using$x_s\in \mathbb{Z}_q$ . -
Set
$A_0=H'(L,m)$ and$A_1=(\frac{\sigma_s}{A_0})^{1/s}$ . -
For all
$i\neq s$ , compute$\sigma_i=A_0A_1^i\in G$ . -
Generate signature
$(r_N,c_N)$ on$(L,m)$ as follows:-
Pick up random
$\alpha\leftarrow \mathbb{Z}_q$ and set$L_s=g^{\alpha}, R_s=h^\alpha\in G$ . -
Pick up at random
$r_i,c_i\leftarrow \mathbb{Z}_q$ , and set$L_i=g^{r_i}y_i^{c_i}, R_i=h^{r_i}\sigma_i^{c_i}\in G$ for every$i\neq s$ . -
Set
$c=H^{\prime\prime}(L,A_0,A_1,L_N,R_N)$ . -
Set
$c_s=c-\sum_{i\neq s}c_i$ and$r_s=\alpha-c_sx_s$ .
-
-
Output
$\sigma=(A_1,c_N,r_N)$ as the signature on$(L,m)$ .
To verify signature
-
Parse
$L$ as$(issue,pk_N)$ . Set$h=H(L)$ and$A_0=H'(L,m)$ , and compute$\sigma_i=A_0A_1^i\in G$ for all$i\in N$ . -
Compute
$L_i=g^{r_i}y_i^{c_i}$ and$R_i=h^{r_i}\sigma_i^{c_i}$ for all$i\in N$ . -
Check that
$H^{\prime\prime}(L,m,A_0,A_1,L_N,R_N)\equiv \sum_{i\in N}c_i$ .
To check the relation between
-
Parse
$L$ as$(issue,pk_N)$ . Set$h=(L)$ and$A_0=H'(L,m)$ , and compute$\sigma_i=A_0A_1^i\in G$ for all$(i\in N)$ . -
For all
$i\in N$ , if$\sigma_i=\sigma_i'$ , store$pk_i$ in$\textbf{List}$ . -
Output
$pk$ if$pk$ is the only entry in$\textbf{List}$ ; "linked" else if$\textbf{List}=pk_N$ ; "indep" otherwise.