-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmean_var_std.py
77 lines (51 loc) · 1.88 KB
/
mean_var_std.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# This Python program aims at building a simple Mean-Variance-Standard Deviation Calculator for a 3 x 3 matrix.
def calculate(list):
if len(list) < 9:
print("ValueError : List must contain nine numbers.")
else:
import numpy as np
mtrx = np.array([list[0:3], list[3:6], list[6:9]])
mt = mtrx.mean()
m1 = mtrx[:,0].mean()
m2 = mtrx[:,1].mean()
m3 = mtrx[:,2].mean()
m4 = mtrx[0,:].mean()
m5 = mtrx[1,:].mean()
m6 = mtrx[2,:].mean()
vt = mtrx.var()
v1 = mtrx[:,0].var()
v2 = mtrx[:,1].var()
v3 = mtrx[:,2].var()
v4 = mtrx[0,:].var()
v5 = mtrx[1,:].var()
v6 = mtrx[2,:].var()
st = mtrx.std()
s1 = mtrx[:,0].std()
s2 = mtrx[:,1].std()
s3 = mtrx[:,2].std()
s4 = mtrx[0,:].std()
s5 = mtrx[1,:].std()
s6 = mtrx[2,:].std()
maxt = mtrx.max()
max1 = mtrx[:,0].max()
max2 = mtrx[:,1].max()
max3 = mtrx[:,2].max()
max4 = mtrx[0,:].max()
max5 = mtrx[1,:].max()
max6 = mtrx[2,:].max()
mint = mtrx.min()
min1 = mtrx[:,0].min()
min2 = mtrx[:,1].min()
min3 = mtrx[:,2].min()
min4 = mtrx[0,:].min()
min5 = mtrx[1,:].min()
min6 = mtrx[2,:].min()
sumt = mtrx.sum()
sum1 = mtrx[:,0].sum()
sum2 = mtrx[:,1].sum()
sum3 = mtrx[:,2].sum()
sum4 = mtrx[0,:].sum()
sum5 = mtrx[1,:].sum()
sum6 = mtrx[2,:].sum()
dic = {'mean': [[m1, m2, m3], [m4, m5, m6], mt],'variance': [[v1, v2, v3], [v4, v5, v6], vt],'standard deviation': [[s1, s2, s3], [s4, s5, s6], st],'max':[[max1, max2, max3], [max4, max5, max6], maxt],'min': [[min1, min2, min3], [min4, min5, min6], mint],'sum': [[sum1, sum2, sum3], [sum4, sum5, sum6], sumt]}
print(dic)