-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.sh
273 lines (236 loc) · 9.79 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#!/bin/bash
# Copyright 2017 Johns Hopkins University (Shinji Watanabe)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
. ./path.sh || exit 1;
. ./cmd.sh || exit 1;
# general configuration
backend=pytorch
stage=5 # start from 0 if you need to start from data preparation
stop_stage=100
ngpu=1 # number of gpus ("0" uses cpu, otherwise use gpu)
debugmode=1
dumpdir=dump # directory to dump full features
N=0 # number of minibatches to be used (mainly for debugging). "0" uses all minibatches.
verbose=1 # verbose option, 1 for INFO
resume= # Resume the training from snapshot
# feature configuration
do_delta=false
train_config=conf/e2e_asr_transducer.yaml
lm_config=conf/lm.yaml
decode_config=conf/decode.yaml
# rnnlm related
lm_resume= # specify a snapshot file to resume LM training
lmtag= # tag for managing LMs
# ngram
ngramtag=
n_gram=4
# decoding parameter
recog_model=model.acc.best # set a model to be used for decoding: 'model.acc.best' or 'model.loss.best'
n_average=10
# data
data=/home/oshindo/espnet/egs/aishell/asr1
data_url=www.openslr.org/resources/33
# exp tag
tag="" # tag for managing experiments.
. utils/parse_options.sh || exit 1;
# Set bash to 'debug' mode, it will exit on :
# -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
set -e
set -u
set -o pipefail
train_set=train_sp
train_dev=dev
recog_set="dev test"
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
echo "stage -1: Data Download"
local/download_and_untar.sh ${data} ${data_url} data_aishell
local/download_and_untar.sh ${data} ${data_url} resource_aishell
fi
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
### Task dependent. You have to make data the following preparation part by yourself.
### But you can utilize Kaldi recipes in most cases
echo "stage 0: Data preparation"
local/aishell_data_prep.sh ${data}/data_aishell/wav ${data}/data_aishell/transcript
# remove space in text
for x in train dev test; do
cp data/${x}/text data/${x}/text.org
paste -d " " <(cut -f 1 -d" " data/${x}/text.org) <(cut -f 2- -d" " data/${x}/text.org | tr -d " ") \
> data/${x}/text
rm data/${x}/text.org
done
fi
feat_tr_dir=${dumpdir}/${train_set}/delta${do_delta}; mkdir -p ${feat_tr_dir}
feat_dt_dir=${dumpdir}/${train_dev}/delta${do_delta}; mkdir -p ${feat_dt_dir}
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
### Task dependent. You have to design training and dev sets by yourself.
### But you can utilize Kaldi recipes in most cases
echo "stage 1: Feature Generation"
fbankdir=fbank
# Generate the fbank features; by default 80-dimensional fbanks with pitch on each frame
steps/make_fbank_pitch.sh --cmd "$train_cmd" --nj 32 --write_utt2num_frames true \
data/train exp/make_fbank/train ${fbankdir}
utils/fix_data_dir.sh data/train
steps/make_fbank_pitch.sh --cmd "$train_cmd" --nj 10 --write_utt2num_frames true \
data/dev exp/make_fbank/dev ${fbankdir}
utils/fix_data_dir.sh data/dev
steps/make_fbank_pitch.sh --cmd "$train_cmd" --nj 10 --write_utt2num_frames true \
data/test exp/make_fbank/test ${fbankdir}
utils/fix_data_dir.sh data/test
# speed-perturbed
utils/perturb_data_dir_speed.sh 0.9 data/train data/temp1
utils/perturb_data_dir_speed.sh 1.0 data/train data/temp2
utils/perturb_data_dir_speed.sh 1.1 data/train data/temp3
utils/combine_data.sh --extra-files utt2uniq data/${train_set} data/temp1 data/temp2 data/temp3
rm -r data/temp1 data/temp2 data/temp3
steps/make_fbank_pitch.sh --cmd "$train_cmd" --nj 32 --write_utt2num_frames true \
data/${train_set} exp/make_fbank/${train_set} ${fbankdir}
utils/fix_data_dir.sh data/${train_set}
# compute global CMVN
compute-cmvn-stats scp:data/${train_set}/feats.scp data/${train_set}/cmvn.ark
# dump features for training
split_dir=$(echo $PWD | awk -F "/" '{print $NF "/" $(NF-1)}')
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d ${feat_tr_dir}/storage ]; then
utils/create_split_dir.pl \
/export/a{11,12,13,14}/${USER}/espnet-data/egs/${split_dir}/dump/${train_set}/delta${do_delta}/storage \
${feat_tr_dir}/storage
fi
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d ${feat_dt_dir}/storage ]; then
utils/create_split_dir.pl \
/export/a{11,12,13,14}/${USER}/espnet-data/egs/${split_dir}/dump/${train_dev}/delta${do_delta}/storage \
${feat_dt_dir}/storage
fi
dump.sh --cmd "$train_cmd" --nj 32 --do_delta ${do_delta} \
data/${train_set}/feats.scp data/${train_set}/cmvn.ark exp/dump_feats/train ${feat_tr_dir}
for rtask in ${recog_set}; do
feat_recog_dir=${dumpdir}/${rtask}/delta${do_delta}; mkdir -p ${feat_recog_dir}
dump.sh --cmd "$train_cmd" --nj 10 --do_delta ${do_delta} \
data/${rtask}/feats.scp data/${train_set}/cmvn.ark exp/dump_feats/recog/${rtask} \
${feat_recog_dir}
done
fi
dict=data/lang_1char/${train_set}_units.txt
echo "dictionary: ${dict}"
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
### Task dependent. You have to check non-linguistic symbols used in the corpus.
echo "stage 2: Dictionary and Json Data Preparation"
mkdir -p data/lang_1char/
echo "make a dictionary"
echo "<unk> 1" > ${dict} # <unk> must be 1, 0 will be used for "blank" in CTC
text2token.py -s 1 -n 1 data/${train_set}/text | cut -f 2- -d" " | tr " " "\n" \
| sort | uniq | grep -v -e '^\s*$' | awk '{print $0 " " NR+1}' >> ${dict}
wc -l ${dict}
echo "make json files"
data2json.sh --feat ${feat_tr_dir}/feats.scp \
data/${train_set} ${dict} > ${feat_tr_dir}/data.json
for rtask in ${recog_set}; do
feat_recog_dir=${dumpdir}/${rtask}/delta${do_delta}
data2json.sh --feat ${feat_recog_dir}/feats.scp \
data/${rtask} ${dict} > ${feat_recog_dir}/data.json
done
fi
# you can skip this and remove --rnnlm option in the recognition (stage 5)
if [ -z ${lmtag} ]; then
lmtag=$(basename ${lm_config%.*})
fi
lmexpname=train_rnnlm_${backend}_${lmtag}
lmexpdir=exp/${lmexpname}
mkdir -p ${lmexpdir}
ngramexpname=train_ngram
ngramexpdir=exp/${ngramexpname}
if [ -z ${ngramtag} ]; then
ngramtag=${n_gram}
fi
mkdir -p ${ngramexpdir}
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
echo "stage 3: LM Preparation"
lmdatadir=data/local/lm_train
mkdir -p ${lmdatadir}
text2token.py -s 1 -n 1 data/train/text | cut -f 2- -d" " \
> ${lmdatadir}/train.txt
text2token.py -s 1 -n 1 data/${train_dev}/text | cut -f 2- -d" " \
> ${lmdatadir}/valid.txt
${cuda_cmd} --gpu ${ngpu} ${lmexpdir}/train.log \
lm_train.py \
--config ${lm_config} \
--ngpu ${ngpu} \
--backend ${backend} \
--verbose 1 \
--outdir ${lmexpdir} \
--tensorboard-dir tensorboard/${lmexpname} \
--train-label ${lmdatadir}/train.txt \
--valid-label ${lmdatadir}/valid.txt \
--resume ${lm_resume} \
--dict ${dict}
lmplz --discount_fallback -o ${n_gram} <${lmdatadir}/train.txt > ${ngramexpdir}/${n_gram}gram.arpa
build_binary -s ${ngramexpdir}/${n_gram}gram.arpa ${ngramexpdir}/${n_gram}gram.bin
fi
if [ -z ${tag} ]; then
expname=${train_set}_${backend}_$(basename ${train_config%.*})
if ${do_delta}; then
expname=${expname}_delta
fi
else
expname=${train_set}_${backend}_${tag}
fi
expdir=exp/${expname}
mkdir -p ${expdir}
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
echo "stage 4: Network Training"
${cuda_cmd} --gpu ${ngpu} ${expdir}/train.log \
asr_train.py \
--config ${train_config} \
--ngpu ${ngpu} \
--backend ${backend} \
--outdir ${expdir}/results \
--tensorboard-dir tensorboard/${expname} \
--debugmode ${debugmode} \
--dict ${dict} \
--debugdir ${expdir} \
--minibatches ${N} \
--verbose ${verbose} \
--resume ${resume} \
--train-json ${feat_tr_dir}/data.json \
--valid-json ${feat_dt_dir}/data.json
fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
echo "stage 5: Decoding"
nj=4
if [[ $(get_yaml.py ${train_config} etype) = *transformer* ]]; then
recog_model=model.last${n_average}.avg.best
average_checkpoints.py --backend ${backend} \
--snapshots ${expdir}/results/snapshot.ep.* \
--out ${expdir}/results/${recog_model} \
--num ${n_average}
fi
pids=() # initialize pids
for rtask in ${recog_set}; do
(
decode_dir=decode_${rtask}_$(basename ${decode_config%.*})_${lmtag}_${ngramtag}
feat_recog_dir=${dumpdir}/${rtask}/delta${do_delta}
# split data
splitjson.py --parts ${nj} ${feat_recog_dir}/data.json
#### use CPU for decoding
ngpu=0
${decode_cmd} JOB=1:${nj} ${expdir}/${decode_dir}/log/decode.JOB.log \
asr_recog.py \
--config ${decode_config} \
--ngpu ${ngpu} \
--backend ${backend} \
--batchsize 0 \
--recog-json ${feat_recog_dir}/split${nj}utt/data.JOB.json \
--result-label ${expdir}/${decode_dir}/data.JOB.json \
--model ${expdir}/results/${recog_model} \
--rnnlm ${lmexpdir}/rnnlm.model.best\
# --api v2
# --ngram-model ${ngramexpdir}/${n_gram}gram.bin \
# --api v2
# --ngram-model exp/baidulm/zh_giga.no_cna_cmn.prune01244.klm \
# --rnnlm ${lmexpdir}/rnnlm.model.best
score_sclite.sh ${expdir}/${decode_dir} ${dict}
) &
pids+=($!) # store background pids
done
i=0; for pid in "${pids[@]}"; do wait ${pid} || ((++i)); done
[ ${i} -gt 0 ] && echo "$0: ${i} background jobs are failed." && false
echo "Finished"
fi