-
Notifications
You must be signed in to change notification settings - Fork 904
/
Copy pathExercises_7.cpp
119 lines (109 loc) · 4.21 KB
/
Exercises_7.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
//Exercises at end of Chapter 7
// 1-4
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
void help(const char **argv) {
cout << "\n\n"
<< "This program solves the Exercises at the end of Chapter 7\n"
<< endl;
}
int main( int argc, const char** argv )
{
help(argv);
/************************************************************************/
/* 1. Using the cv::RNG random number generator:
a. Generate and print three floating-point numbers, each drawn from a uniform
distribution from 0.0 to 1.0.
b. Generate and print three double-precision numbers, each drawn from a
Gaussian distribution centered at 0.0 and with a standard deviation of 1.0.
c. Generate and print three unsigned bytes, each drawn from a uniform distri‐
bution from 0 to 255.
/************************************************************************/
RNG rng = theRNG();
// a
float f1 = rng.uniform(0.f,1.f);
float f2 = rng.uniform(0.f,1.f);
float f3 = rng.uniform(0.f,1.f);
cout<<" f1 " << f1 <<" f2 "<<f2<<" f3 "<<f3<<endl;
// b
Vec3d vec3d;
rng.fill(vec3d,RNG::NORMAL,0.,1.);
cout<<" d1 "<<vec3d[0]<<" d2 "<<vec3d[1]<<" d3 "<<vec3d[2]<<endl;
// c
unsigned byte1 = rng.uniform(0,255);
unsigned byte2 = rng.uniform(0,255);
unsigned byte3 = rng.uniform(0,255);
cout<<" byte1 " << byte1 <<" byte2 "<<byte2<<" byte3 "<<byte3<<endl;
/************************************************************************/
/* 2. Using the fill() method of the cv::RNG random number generator, create an
array of:
a. 20 floating-point numbers with a uniform distribution from 0.0 to 1.0.
b. 20 floating-point numbers with a Gaussian distribution centered at 0.0 and
with a standard deviation of 1.0.
c. 20 unsigned bytes with a uniform distribution from 0 to 255.
d. 20 color triplets, each of three bytes with a uniform distribution from 0 to 255. */
/************************************************************************/
// a
Mat matFloat20 = Mat(20,1,CV_32FC1,Scalar(0));
rng.fill(matFloat20,RNG::UNIFORM,0.f,1.f);
// b
rng.fill(matFloat20,RNG::NORMAL,0.f,1.f);
// c
Mat matUbyte20 = Mat(20,1,CV_8UC1,Scalar(0));
rng.fill(matUbyte20,RNG::UNIFORM,0,255);
// d
Mat matColor20 = Mat(20,1,CV_8UC3,Scalar(0));
rng.fill(matColor20,RNG::UNIFORM,0,255);
/************************************************************************/
/* 3. Using the cv::RNG random number generator, create an array of 100 three-byte
objects such that:
a. The first and second dimensions have a Gaussian distribution, centered at 64
and 192, respectively, each with a variance of 10.
b. The third dimension has a Gaussian distribution, centered at 128 and with a
variance of 2.
c. Using the cv::PCA object, compute a projection for which maxComponents=2.
d. Compute the mean in both dimensions of the projection; explain the result. */
/************************************************************************/
Mat matInt100 = Mat(100,1,CV_32FC3,Scalar(0));
// a
vector<Mat> planes;
split(matInt100,planes);
rng.fill(planes[0],RNG::NORMAL,64,10);
rng.fill(planes[1],RNG::NORMAL,192,10);
// b
rng.fill(planes[2],RNG::NORMAL,128,2);
// c
PCA pca(planes[0],Mat(),CV_PCA_DATA_AS_ROW,2);
planes[0] = pca.project(planes[0]);
pca(planes[1],Mat(),CV_PCA_DATA_AS_ROW,2);
planes[1] = pca.project(planes[1]);
pca(planes[2],Mat(),CV_PCA_DATA_AS_ROW,2);
planes[2] = pca.project(planes[2]);
//d
f1 = 0;
f2 = 0;
f3 = 0;
for (int i = 0;i<100;i++)
{
f1 += planes[0].at<float>(i,0);
f2 += planes[1].at<float>(i,0);
f3 += planes[2].at<float>(i,0);
}
f1 = f1/100;
f2 = f2/100;
f3 = f3/100;
/************************************************************************/
/* 4. page 206 at 《leanring Opencv 3.0》
/************************************************************************/
Matx32d AX(1, 1,
0, 1,
-1 ,1);
Mat A = static_cast<Mat>(AX);
Mat U, W, V;
SVD::compute(A, W, U, V);
waitKey();
getchar();
return 0;
}