-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathsuperformula.scad
42 lines (35 loc) · 1.63 KB
/
superformula.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
/****************************************************************************
* Superformula
* (c) 2014 Torsten Paul <Torsten.Paul@gmx.de>
* License: CC-BY-SA 3.0
*
* See http://en.wikipedia.org/wiki/Superformula
*/
// Display configuration
gridx = 50;
gridy = 50;
columns = 3;
height = 4;
angle_step = 2;
// Parameters of the superformula (with an additional scale
// factor to make the resulting objects roughly the same size).
a = [ 1, 1, 1, 1, 1, 1, 1000, 1, 3, 1, 1, 4];
b = [ 1, 1, 1, 1, 1, 1, 200, 0.6, 2, 1, 3, 3];
m = [ 3, 1, 5, 8, 16, 6, 52, 30, 6, 6, 6, 30];
n1 = [4.5, 0.5, 2, 0.5, 0.5, 1, 8, 75, 1.5, 0.4, 3.8, 6];
n2 = [ 10, 0.5, 7, 0.5, 0.5, 7, 3, 1.5, 0.5, 0, 16, 7];
n3 = [ 10, 0.5, 7, 10, 16, 8, 2, 35, 2, 6, 10, 3];
f = [ 10, 22, 8, 12, 10, 2, 3, 10, 8, 15, 0.8, 4]; // scale factor
// helper function
function r1(phi, idx) = pow(abs(cos(m[idx] * phi / 4) / a[idx]), n2[idx]);
function r2(phi, idx) = pow(abs(sin(m[idx] * phi / 4) / b[idx]), n3[idx]);
// main superformula returning the radius for a given angle phi
function r(phi, idx) = f[idx] * pow(abs(r1(phi, idx) + r2(phi, idx)), -1 / n1[idx]);
// convert polar coordinates to cartesian coordinates
function point(phi, idx) = [ r(phi, idx) * cos(phi), r(phi, idx) * sin(phi)];
// function to collect all points in 360 degrees
function points(angle, idx) = [for (i=[0:angle_step:360-angle_step]) point(i, idx)];
for (idx = [0 : len(m) - 1])
translate([gridx * (idx % columns), gridy * floor(idx / columns), 0])
linear_extrude(height = height, scale = 0)
polygon(points(0, idx));