-
Notifications
You must be signed in to change notification settings - Fork 656
/
sampling.py
430 lines (347 loc) · 15.9 KB
/
sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
For general information about sampling, see `the specification <https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/trace/sdk.md#sampling>`_.
OpenTelemetry provides two types of samplers:
- `StaticSampler`
- `TraceIdRatioBased`
A `StaticSampler` always returns the same sampling result regardless of the conditions. Both possible StaticSamplers are already created:
- Always sample spans: ALWAYS_ON
- Never sample spans: ALWAYS_OFF
A `TraceIdRatioBased` sampler makes a random sampling result based on the sampling probability given.
If the span being sampled has a parent, `ParentBased` will respect the parent delegate sampler. Otherwise, it returns the sampling result from the given root sampler.
Currently, sampling results are always made during the creation of the span. However, this might not always be the case in the future (see `OTEP #115 <https://github.com/open-telemetry/oteps/pull/115>`_).
Custom samplers can be created by subclassing `Sampler` and implementing `Sampler.should_sample` as well as `Sampler.get_description`.
Samplers are able to modify the `opentelemetry.trace.span.TraceState` of the parent of the span being created. For custom samplers, it is suggested to implement `Sampler.should_sample` to utilize the
parent span context's `opentelemetry.trace.span.TraceState` and pass into the `SamplingResult` instead of the explicit trace_state field passed into the parameter of `Sampler.should_sample`.
To use a sampler, pass it into the tracer provider constructor. For example:
.. code:: python
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import (
ConsoleSpanExporter,
SimpleSpanProcessor,
)
from opentelemetry.sdk.trace.sampling import TraceIdRatioBased
# sample 1 in every 1000 traces
sampler = TraceIdRatioBased(1/1000)
# set the sampler onto the global tracer provider
trace.set_tracer_provider(TracerProvider(sampler=sampler))
# set up an exporter for sampled spans
trace.get_tracer_provider().add_span_processor(
SimpleSpanProcessor(ConsoleSpanExporter())
)
# created spans will now be sampled by the TraceIdRatioBased sampler
with trace.get_tracer(__name__).start_as_current_span("Test Span"):
...
The tracer sampler can also be configured via environment variables ``OTEL_TRACES_SAMPLER`` and ``OTEL_TRACES_SAMPLER_ARG`` (only if applicable).
The list of built-in values for ``OTEL_TRACES_SAMPLER`` are:
* always_on - Sampler that always samples spans, regardless of the parent span's sampling decision.
* always_off - Sampler that never samples spans, regardless of the parent span's sampling decision.
* traceidratio - Sampler that samples probabalistically based on rate.
* parentbased_always_on - (default) Sampler that respects its parent span's sampling decision, but otherwise always samples.
* parentbased_always_off - Sampler that respects its parent span's sampling decision, but otherwise never samples.
* parentbased_traceidratio - Sampler that respects its parent span's sampling decision, but otherwise samples probabalistically based on rate.
Sampling probability can be set with ``OTEL_TRACES_SAMPLER_ARG`` if the sampler is traceidratio or parentbased_traceidratio. Rate must be in the range [0.0,1.0]. When not provided rate will be set to
1.0 (maximum rate possible).
Prev example but with environment variables. Please make sure to set the env ``OTEL_TRACES_SAMPLER=traceidratio`` and ``OTEL_TRACES_SAMPLER_ARG=0.001``.
.. code:: python
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import (
ConsoleSpanExporter,
SimpleSpanProcessor,
)
trace.set_tracer_provider(TracerProvider())
# set up an exporter for sampled spans
trace.get_tracer_provider().add_span_processor(
SimpleSpanProcessor(ConsoleSpanExporter())
)
# created spans will now be sampled by the TraceIdRatioBased sampler with rate 1/1000.
with trace.get_tracer(__name__).start_as_current_span("Test Span"):
...
When utilizing a configurator, you can configure a custom sampler. In order to create a configurable custom sampler, create an entry point for the custom sampler
factory method or function under the entry point group, ``opentelemetry_traces_sampler``. The custom sampler factory method must be of type ``Callable[[str], Sampler]``, taking a single string argument and
returning a Sampler object. The single input will come from the string value of the ``OTEL_TRACES_SAMPLER_ARG`` environment variable. If ``OTEL_TRACES_SAMPLER_ARG`` is not configured, the input will
be an empty string. For example:
.. code:: python
setup(
...
entry_points={
...
"opentelemetry_traces_sampler": [
"custom_sampler_name = path.to.sampler.factory.method:CustomSamplerFactory.get_sampler"
]
}
)
# ...
class CustomRatioSampler(Sampler):
def __init__(rate):
# ...
# ...
class CustomSamplerFactory:
@staticmethod
get_sampler(sampler_argument):
try:
rate = float(sampler_argument)
return CustomSampler(rate)
except ValueError: # In case argument is empty string.
return CustomSampler(0.5)
In order to configure you application with a custom sampler's entry point, set the ``OTEL_TRACES_SAMPLER`` environment variable to the key name of the entry point. For example, to configured the
above sampler, set ``OTEL_TRACES_SAMPLER=custom_sampler_name`` and ``OTEL_TRACES_SAMPLER_ARG=0.5``.
"""
import abc
import enum
import os
from logging import getLogger
from types import MappingProxyType
from typing import Optional, Sequence
# pylint: disable=unused-import
from opentelemetry.context import Context
from opentelemetry.sdk.environment_variables import (
OTEL_TRACES_SAMPLER,
OTEL_TRACES_SAMPLER_ARG,
)
from opentelemetry.trace import Link, SpanKind, get_current_span
from opentelemetry.trace.span import TraceState
from opentelemetry.util.types import Attributes
_logger = getLogger(__name__)
class Decision(enum.Enum):
# IsRecording() == false, span will not be recorded and all events and attributes will be dropped.
DROP = 0
# IsRecording() == true, but Sampled flag MUST NOT be set.
RECORD_ONLY = 1
# IsRecording() == true AND Sampled flag` MUST be set.
RECORD_AND_SAMPLE = 2
def is_recording(self):
return self in (Decision.RECORD_ONLY, Decision.RECORD_AND_SAMPLE)
def is_sampled(self):
return self is Decision.RECORD_AND_SAMPLE
class SamplingResult:
"""A sampling result as applied to a newly-created Span.
Args:
decision: A sampling decision based off of whether the span is recorded
and the sampled flag in trace flags in the span context.
attributes: Attributes to add to the `opentelemetry.trace.Span`.
trace_state: The tracestate used for the `opentelemetry.trace.Span`.
Could possibly have been modified by the sampler.
"""
def __repr__(self) -> str:
return f"{type(self).__name__}({str(self.decision)}, attributes={str(self.attributes)})"
def __init__(
self,
decision: Decision,
attributes: "Attributes" = None,
trace_state: "TraceState" = None,
) -> None:
self.decision = decision
if attributes is None:
self.attributes = MappingProxyType({})
else:
self.attributes = MappingProxyType(attributes)
self.trace_state = trace_state
class Sampler(abc.ABC):
@abc.abstractmethod
def should_sample(
self,
parent_context: Optional["Context"],
trace_id: int,
name: str,
kind: SpanKind = None,
attributes: Attributes = None,
links: Sequence["Link"] = None,
trace_state: "TraceState" = None,
) -> "SamplingResult":
pass
@abc.abstractmethod
def get_description(self) -> str:
pass
class StaticSampler(Sampler):
"""Sampler that always returns the same decision."""
def __init__(self, decision: "Decision"):
self._decision = decision
def should_sample(
self,
parent_context: Optional["Context"],
trace_id: int,
name: str,
kind: SpanKind = None,
attributes: Attributes = None,
links: Sequence["Link"] = None,
trace_state: "TraceState" = None,
) -> "SamplingResult":
if self._decision is Decision.DROP:
attributes = None
return SamplingResult(
self._decision,
attributes,
_get_parent_trace_state(parent_context),
)
def get_description(self) -> str:
if self._decision is Decision.DROP:
return "AlwaysOffSampler"
return "AlwaysOnSampler"
ALWAYS_OFF = StaticSampler(Decision.DROP)
"""Sampler that never samples spans, regardless of the parent span's sampling decision."""
ALWAYS_ON = StaticSampler(Decision.RECORD_AND_SAMPLE)
"""Sampler that always samples spans, regardless of the parent span's sampling decision."""
class TraceIdRatioBased(Sampler):
"""
Sampler that makes sampling decisions probabilistically based on `rate`.
Args:
rate: Probability (between 0 and 1) that a span will be sampled
"""
def __init__(self, rate: float):
if rate < 0.0 or rate > 1.0:
raise ValueError("Probability must be in range [0.0, 1.0].")
self._rate = rate
self._bound = self.get_bound_for_rate(self._rate)
# For compatibility with 64 bit trace IDs, the sampler checks the 64
# low-order bits of the trace ID to decide whether to sample a given trace.
TRACE_ID_LIMIT = (1 << 64) - 1
@classmethod
def get_bound_for_rate(cls, rate: float) -> int:
return round(rate * (cls.TRACE_ID_LIMIT + 1))
@property
def rate(self) -> float:
return self._rate
@property
def bound(self) -> int:
return self._bound
def should_sample(
self,
parent_context: Optional["Context"],
trace_id: int,
name: str,
kind: SpanKind = None,
attributes: Attributes = None,
links: Sequence["Link"] = None,
trace_state: "TraceState" = None,
) -> "SamplingResult":
decision = Decision.DROP
if trace_id & self.TRACE_ID_LIMIT < self.bound:
decision = Decision.RECORD_AND_SAMPLE
if decision is Decision.DROP:
attributes = None
return SamplingResult(
decision,
attributes,
_get_parent_trace_state(parent_context),
)
def get_description(self) -> str:
return f"TraceIdRatioBased{{{self._rate}}}"
class ParentBased(Sampler):
"""
If a parent is set, applies the respective delegate sampler.
Otherwise, uses the root provided at initialization to make a
decision.
Args:
root: Sampler called for spans with no parent (root spans).
remote_parent_sampled: Sampler called for a remote sampled parent.
remote_parent_not_sampled: Sampler called for a remote parent that is
not sampled.
local_parent_sampled: Sampler called for a local sampled parent.
local_parent_not_sampled: Sampler called for a local parent that is
not sampled.
"""
def __init__(
self,
root: Sampler,
remote_parent_sampled: Sampler = ALWAYS_ON,
remote_parent_not_sampled: Sampler = ALWAYS_OFF,
local_parent_sampled: Sampler = ALWAYS_ON,
local_parent_not_sampled: Sampler = ALWAYS_OFF,
):
self._root = root
self._remote_parent_sampled = remote_parent_sampled
self._remote_parent_not_sampled = remote_parent_not_sampled
self._local_parent_sampled = local_parent_sampled
self._local_parent_not_sampled = local_parent_not_sampled
def should_sample(
self,
parent_context: Optional["Context"],
trace_id: int,
name: str,
kind: SpanKind = None,
attributes: Attributes = None,
links: Sequence["Link"] = None,
trace_state: "TraceState" = None,
) -> "SamplingResult":
parent_span_context = get_current_span(
parent_context
).get_span_context()
# default to the root sampler
sampler = self._root
# respect the sampling and remote flag of the parent if present
if parent_span_context is not None and parent_span_context.is_valid:
if parent_span_context.is_remote:
if parent_span_context.trace_flags.sampled:
sampler = self._remote_parent_sampled
else:
sampler = self._remote_parent_not_sampled
else:
if parent_span_context.trace_flags.sampled:
sampler = self._local_parent_sampled
else:
sampler = self._local_parent_not_sampled
return sampler.should_sample(
parent_context=parent_context,
trace_id=trace_id,
name=name,
kind=kind,
attributes=attributes,
links=links,
)
def get_description(self):
return f"ParentBased{{root:{self._root.get_description()},remoteParentSampled:{self._remote_parent_sampled.get_description()},remoteParentNotSampled:{self._remote_parent_not_sampled.get_description()},localParentSampled:{self._local_parent_sampled.get_description()},localParentNotSampled:{self._local_parent_not_sampled.get_description()}}}"
DEFAULT_OFF = ParentBased(ALWAYS_OFF)
"""Sampler that respects its parent span's sampling decision, but otherwise never samples."""
DEFAULT_ON = ParentBased(ALWAYS_ON)
"""Sampler that respects its parent span's sampling decision, but otherwise always samples."""
class ParentBasedTraceIdRatio(ParentBased):
"""
Sampler that respects its parent span's sampling decision, but otherwise
samples probabalistically based on `rate`.
"""
def __init__(self, rate: float):
root = TraceIdRatioBased(rate=rate)
super().__init__(root=root)
_KNOWN_SAMPLERS = {
"always_on": ALWAYS_ON,
"always_off": ALWAYS_OFF,
"parentbased_always_on": DEFAULT_ON,
"parentbased_always_off": DEFAULT_OFF,
"traceidratio": TraceIdRatioBased,
"parentbased_traceidratio": ParentBasedTraceIdRatio,
}
def _get_from_env_or_default() -> Sampler:
trace_sampler = os.getenv(
OTEL_TRACES_SAMPLER, "parentbased_always_on"
).lower()
if trace_sampler not in _KNOWN_SAMPLERS:
_logger.warning("Couldn't recognize sampler %s.", trace_sampler)
trace_sampler = "parentbased_always_on"
if trace_sampler in ("traceidratio", "parentbased_traceidratio"):
try:
rate = float(os.getenv(OTEL_TRACES_SAMPLER_ARG))
except ValueError:
_logger.warning("Could not convert TRACES_SAMPLER_ARG to float.")
rate = 1.0
return _KNOWN_SAMPLERS[trace_sampler](rate)
return _KNOWN_SAMPLERS[trace_sampler]
def _get_parent_trace_state(parent_context) -> Optional["TraceState"]:
parent_span_context = get_current_span(parent_context).get_span_context()
if parent_span_context is None or not parent_span_context.is_valid:
return None
return parent_span_context.trace_state