diff --git a/docs/changelog.md b/docs/changelog.md index f747898662..72a018a210 100644 --- a/docs/changelog.md +++ b/docs/changelog.md @@ -9,6 +9,7 @@ **Improvements** - Add softmax option for pytorch2onnx tool ([#781](https://github.com/open-mmlab/mmaction2/pull/781)) +- Test with onnx models and TensorRT engines ([#758](https://github.com/open-mmlab/mmaction2/pull/758)) **Bug and Typo Fixes** diff --git a/docs/getting_started.md b/docs/getting_started.md index a8f8559a22..1c7f204c95 100644 --- a/docs/getting_started.md +++ b/docs/getting_started.md @@ -68,7 +68,7 @@ You can use the following commands to test a dataset. # single-gpu testing python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] \ [--gpu-collect] [--tmpdir ${TMPDIR}] [--options ${OPTIONS}] [--average-clips ${AVG_TYPE}] \ - [--launcher ${JOB_LAUNCHER}] [--local_rank ${LOCAL_RANK}] + [--launcher ${JOB_LAUNCHER}] [--local_rank ${LOCAL_RANK}] [--onnx] [--tensorrt] # multi-gpu testing ./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] \ @@ -86,6 +86,8 @@ Optional arguments: - `AVG_TYPE`: Items to average the test clips. If set to `prob`, it will apply softmax before averaging the clip scores. Otherwise, it will directly average the clip scores. - `JOB_LAUNCHER`: Items for distributed job initialization launcher. Allowed choices are `none`, `pytorch`, `slurm`, `mpi`. Especially, if set to none, it will test in a non-distributed mode. - `LOCAL_RANK`: ID for local rank. If not specified, it will be set to 0. +- `--onnx`: If specified, recognition results will be generated by onnx model and `CHECKPOINT_FILE` should be onnx model file path. Onnx model files are generated by `/tools/pytorch2onnx.py`. For now, multi-gpu mode and dynamic input shape mode are not supported. Please note that the output tensors of dataset and the input tensors of onnx model should share the same shape. And it is recommended to remove all test-time augmentation methods in `test_pipeline`(`ThreeCrop`, `TenCrop`, `twice_sample`, etc.) +- `--tensorrt`: If specified, recognition results will be generated by TensorRT engine and `CHECKPOINT_FILE` should be TensorRT engine file path. TensorRT engines are generated by exported onnx models and TensorRT official convertion tools. For now, multi-gpu mode and dynamic input shape mode are not supported. Please note that the output tensors of dataset and the input tensors of TensorRT engine should share the same shape. And it is recommended to remove all test-time augmentation methods in `test_pipeline`(`ThreeCrop`, `TenCrop`, `twice_sample`, etc.) Examples: @@ -115,6 +117,14 @@ Assume that you have already downloaded the checkpoints to the directory `checkp --launcher slurm --eval top_k_accuracy ``` +4. Test TSN on Something-Something V1 with onnx model and evaluate the top-k accuracy + + ```shell + python tools/test.py configs/recognition/tsn/tsn_r50_1x1x3_100e_kinetics400_rgb.py \ + checkpoints/SOME_CHECKPOINT.onnx \ + --eval top_k_accuracy --onnx + ``` + ### High-level APIs for testing a video and rawframes Here is an example of building the model and testing a given video. diff --git a/docs_zh_CN/getting_started.md b/docs_zh_CN/getting_started.md index 201e072614..7e3de13fc3 100644 --- a/docs_zh_CN/getting_started.md +++ b/docs_zh_CN/getting_started.md @@ -17,7 +17,7 @@ - [使用单个 GPU 进行训练](#使用单个-GPU-进行训练) - [使用多个 GPU 进行训练](#使用多个-GPU-进行训练) - [使用多台机器进行训练](#使用多台机器进行训练) - - [使用单台机器创建多个任务](#使用单台机器启动多个任务) + - [使用单台机器启动多个任务](#使用单台机器启动多个任务) - [详细教程](#详细教程) @@ -67,7 +67,7 @@ MMAction2 提供了一些脚本用于测试数据集(如 Kinetics-400,Someth # 单 GPU 测试 python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] \ [--gpu-collect] [--tmpdir ${TMPDIR}] [--options ${OPTIONS}] [--average-clips ${AVG_TYPE}] \ - [--launcher ${JOB_LAUNCHER}] [--local_rank ${LOCAL_RANK}] + [--launcher ${JOB_LAUNCHER}] [--local_rank ${LOCAL_RANK}] [--onnx] [--tensorrt] # 多 GPU 测试 ./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] \ @@ -85,6 +85,8 @@ python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [- - `AVG_TYPE`:用于平均测试片段结果的选项。如果被设置为 `prob`,则会在平均测试片段结果之前施加 softmax 函数。否则,会直接进行平均。 - `JOB_LAUNCHER`:分布式任务初始化启动器选项。可选值有 `none`,`pytorch`,`slurm`,`mpi`。特别地,如果被设置为 `none`, 则会以非分布式模式进行测试。 - `LOCAL_RANK`:本地 rank 的 ID。如果没有被指定,则会被设置为 0。 +- `--onnx`: 如果指定,将通过 onnx 模型推理获取预测结果,输入参数 `CHECKPOINT_FILE` 应为 onnx 模型文件。Onnx 模型文件由 `/tools/pytorch2onnx.py` 脚本导出。目前,不支持多 GPU 测试以及动态张量形状(Dynamic shape)。请注意,数据集输出与模型输入张量的形状应保持一致。同时,不建议使用测试时数据增强,如 `ThreeCrop`,`TenCrop`,`twice_sample` 等。 +- `--tensorrt`: 如果指定,将通过 TensorRT 模型推理获取预测结果,输入参数 `CHECKPOINT_FILE` 应为 TensorRT 模型文件。TensorRT 模型文件由导出的 onnx 模型以及 TensorRT 官方模型转换工具生成。目前,不支持多 GPU 测试以及动态张量形状(Dynamic shape)。请注意,数据集输出与模型输入张量的形状应保持一致。同时,不建议使用测试时数据增强,如 `ThreeCrop`,`TenCrop`,`twice_sample` 等。 例子: @@ -114,6 +116,14 @@ python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [- --launcher slurm --eval top_k_accuracy ``` +4. 在 Something-Something V1 下测试 onnx 格式的 TSN 模型,并验证 `top-k accuracy` 指标 + + ```shell + python tools/test.py configs/recognition/tsn/tsn_r50_1x1x3_100e_kinetics400_rgb.py \ + checkpoints/SOME_CHECKPOINT.onnx \ + --eval top_k_accuracy --onnx + ``` + ### 使用高级 API 对视频和帧文件夹进行测试 这里举例说明如何构建模型并测试给定视频 diff --git a/tools/test.py b/tools/test.py index efc88e8aae..ab037abaa8 100644 --- a/tools/test.py +++ b/tools/test.py @@ -80,6 +80,14 @@ def parse_args(): default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) + parser.add_argument( + '--onnx', + action='store_true', + help='Whether to test with onnx model or not') + parser.add_argument( + '--tensorrt', + action='store_true', + help='Whether to test with TensorRT engine or not') args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) @@ -106,9 +114,152 @@ def turn_off_pretrained(cfg): turn_off_pretrained(sub_cfg) +def inference_pytorch(args, cfg, distributed, data_loader): + """Get predictions by pytorch models.""" + if args.average_clips is not None: + # You can set average_clips during testing, it will override the + # original setting + if cfg.model.get('test_cfg') is None and cfg.get('test_cfg') is None: + cfg.model.setdefault('test_cfg', + dict(average_clips=args.average_clips)) + else: + if cfg.model.get('test_cfg') is not None: + cfg.model.test_cfg.average_clips = args.average_clips + else: + cfg.test_cfg.average_clips = args.average_clips + + # remove redundant pretrain steps for testing + turn_off_pretrained(cfg.model) + + # build the model and load checkpoint + model = build_model( + cfg.model, train_cfg=None, test_cfg=cfg.get('test_cfg')) + + if len(cfg.module_hooks) > 0: + register_module_hooks(model, cfg.module_hooks) + + fp16_cfg = cfg.get('fp16', None) + if fp16_cfg is not None: + wrap_fp16_model(model) + load_checkpoint(model, args.checkpoint, map_location='cpu') + + if args.fuse_conv_bn: + model = fuse_conv_bn(model) + + if not distributed: + model = MMDataParallel(model, device_ids=[0]) + outputs = single_gpu_test(model, data_loader) + else: + model = MMDistributedDataParallel( + model.cuda(), + device_ids=[torch.cuda.current_device()], + broadcast_buffers=False) + outputs = multi_gpu_test(model, data_loader, args.tmpdir, + args.gpu_collect) + + return outputs + + +def inference_tensorrt(ckpt_path, distributed, data_loader, batch_size): + """Get predictions by TensorRT engine. + + For now, multi-gpu mode and dynamic tensor shape are not supported. + """ + assert not distributed, \ + 'TensorRT engine inference only supports single gpu mode.' + import tensorrt as trt + from mmcv.tensorrt.tensorrt_utils import (torch_dtype_from_trt, + torch_device_from_trt) + + # load engine + with trt.Logger() as logger, trt.Runtime(logger) as runtime: + with open(ckpt_path, mode='rb') as f: + engine_bytes = f.read() + engine = runtime.deserialize_cuda_engine(engine_bytes) + + # For now, only support fixed input tensor + cur_batch_size = engine.get_binding_shape(0)[0] + assert batch_size == cur_batch_size, \ + ('Dataset and TensorRT model should share the same batch size, ' + f'but get {batch_size} and {cur_batch_size}') + + context = engine.create_execution_context() + + # get output tensor + dtype = torch_dtype_from_trt(engine.get_binding_dtype(1)) + shape = tuple(context.get_binding_shape(1)) + device = torch_device_from_trt(engine.get_location(1)) + output = torch.empty( + size=shape, dtype=dtype, device=device, requires_grad=False) + + # get predictions + results = [] + dataset = data_loader.dataset + prog_bar = mmcv.ProgressBar(len(dataset)) + for data in data_loader: + bindings = [ + data['imgs'].contiguous().data_ptr(), + output.contiguous().data_ptr() + ] + context.execute_async_v2(bindings, + torch.cuda.current_stream().cuda_stream) + results.extend(output.cpu().numpy()) + batch_size = len(next(iter(data.values()))) + for _ in range(batch_size): + prog_bar.update() + return results + + +def inference_onnx(ckpt_path, distributed, data_loader, batch_size): + """Get predictions by ONNX. + + For now, multi-gpu mode and dynamic tensor shape are not supported. + """ + assert not distributed, 'ONNX inference only supports single gpu mode.' + + import onnx + import onnxruntime as rt + + # get input tensor name + onnx_model = onnx.load(ckpt_path) + input_all = [node.name for node in onnx_model.graph.input] + input_initializer = [node.name for node in onnx_model.graph.initializer] + net_feed_input = list(set(input_all) - set(input_initializer)) + assert len(net_feed_input) == 1 + + # For now, only support fixed tensor shape + input_tensor = None + for tensor in onnx_model.graph.input: + if tensor.name == net_feed_input[0]: + input_tensor = tensor + break + cur_batch_size = input_tensor.type.tensor_type.shape.dim[0].dim_value + assert batch_size == cur_batch_size, \ + ('Dataset and ONNX model should share the same batch size, ' + f'but get {batch_size} and {cur_batch_size}') + + # get predictions + sess = rt.InferenceSession(ckpt_path) + results = [] + dataset = data_loader.dataset + prog_bar = mmcv.ProgressBar(len(dataset)) + for data in data_loader: + imgs = data['imgs'].cpu().numpy() + onnx_result = sess.run(None, {net_feed_input[0]: imgs})[0] + results.extend(onnx_result) + batch_size = len(next(iter(data.values()))) + for _ in range(batch_size): + prog_bar.update() + return results + + def main(): args = parse_args() + if args.tensorrt and args.onnx: + raise ValueError( + 'Cannot set onnx mode and tensorrt mode at the same time.') + cfg = Config.fromfile(args.config) cfg.merge_from_dict(args.cfg_options) @@ -158,18 +309,6 @@ def main(): torch.backends.cudnn.benchmark = True cfg.data.test.test_mode = True - if args.average_clips is not None: - # You can set average_clips during testing, it will override the - # original setting - if cfg.model.get('test_cfg') is None and cfg.get('test_cfg') is None: - cfg.model.setdefault('test_cfg', - dict(average_clips=args.average_clips)) - else: - if cfg.model.get('test_cfg') is not None: - cfg.model.test_cfg.average_clips = args.average_clips - else: - cfg.test_cfg.average_clips = args.average_clips - # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False @@ -191,34 +330,14 @@ def main(): **cfg.data.get('test_dataloader', {})) data_loader = build_dataloader(dataset, **dataloader_setting) - # remove redundant pretrain steps for testing - turn_off_pretrained(cfg.model) - - # build the model and load checkpoint - model = build_model( - cfg.model, train_cfg=None, test_cfg=cfg.get('test_cfg')) - - if len(cfg.module_hooks) > 0: - register_module_hooks(model, cfg.module_hooks) - - fp16_cfg = cfg.get('fp16', None) - if fp16_cfg is not None: - wrap_fp16_model(model) - load_checkpoint(model, args.checkpoint, map_location='cpu') - - if args.fuse_conv_bn: - model = fuse_conv_bn(model) - - if not distributed: - model = MMDataParallel(model, device_ids=[0]) - outputs = single_gpu_test(model, data_loader) + if args.tensorrt: + outputs = inference_tensorrt(args.checkpoint, distributed, data_loader, + dataloader_setting['videos_per_gpu']) + elif args.onnx: + outputs = inference_onnx(args.checkpoint, distributed, data_loader, + dataloader_setting['videos_per_gpu']) else: - model = MMDistributedDataParallel( - model.cuda(), - device_ids=[torch.cuda.current_device()], - broadcast_buffers=False) - outputs = multi_gpu_test(model, data_loader, args.tmpdir, - args.gpu_collect) + outputs = inference_pytorch(args, cfg, distributed, data_loader) rank, _ = get_dist_info() if rank == 0: