-
Notifications
You must be signed in to change notification settings - Fork 128
/
app.py
372 lines (339 loc) · 13 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import os
import gradio as gr
import torch
from PIL import Image
from mmgpt.models.builder import create_model_and_transforms
TEMPLATE = "Below is an instruction that describes a task. Write a response that appropriately completes the request."
response_split = "### Response:"
class Inferencer:
def __init__(self, finetune_path, llama_path, open_flamingo_path):
ckpt = torch.load(finetune_path, map_location="cpu")
if "model_state_dict" in ckpt:
state_dict = ckpt["model_state_dict"]
# remove the "module." prefix
state_dict = {
k[7:]: v
for k, v in state_dict.items() if k.startswith("module.")
}
else:
state_dict = ckpt
tuning_config = ckpt.get("tuning_config")
if tuning_config is None:
print("tuning_config not found in checkpoint")
else:
print("tuning_config found in checkpoint: ", tuning_config)
model, image_processor, tokenizer = create_model_and_transforms(
model_name="open_flamingo",
clip_vision_encoder_path="ViT-L-14",
clip_vision_encoder_pretrained="openai",
lang_encoder_path=llama_path,
tokenizer_path=llama_path,
pretrained_model_path=open_flamingo_path,
tuning_config=tuning_config,
)
model.load_state_dict(state_dict, strict=False)
model.half()
model = model.to("cuda")
model.eval()
tokenizer.padding_side = "left"
tokenizer.add_eos_token = False
self.model = model
self.image_processor = image_processor
self.tokenizer = tokenizer
def __call__(self, prompt, imgpaths, max_new_token, num_beams, temperature,
top_k, top_p, do_sample):
if len(imgpaths) > 1:
raise gr.Error(
"Current only support one image, please clear gallery and upload one image"
)
lang_x = self.tokenizer([prompt], return_tensors="pt")
if len(imgpaths) == 0 or imgpaths is None:
for layer in self.model.lang_encoder._get_decoder_layers():
layer.condition_only_lang_x(True)
output_ids = self.model.lang_encoder.generate(
input_ids=lang_x["input_ids"].cuda(),
attention_mask=lang_x["attention_mask"].cuda(),
max_new_tokens=max_new_token,
num_beams=num_beams,
temperature=temperature,
top_k=top_k,
top_p=top_p,
do_sample=do_sample,
)[0]
for layer in self.model.lang_encoder._get_decoder_layers():
layer.condition_only_lang_x(False)
else:
images = (Image.open(fp) for fp in imgpaths)
vision_x = [self.image_processor(im).unsqueeze(0) for im in images]
vision_x = torch.cat(vision_x, dim=0)
vision_x = vision_x.unsqueeze(1).unsqueeze(0).half()
output_ids = self.model.generate(
vision_x=vision_x.cuda(),
lang_x=lang_x["input_ids"].cuda(),
attention_mask=lang_x["attention_mask"].cuda(),
max_new_tokens=max_new_token,
num_beams=num_beams,
temperature=temperature,
top_k=top_k,
top_p=top_p,
do_sample=do_sample,
)[0]
generated_text = self.tokenizer.decode(
output_ids, skip_special_tokens=True)
# print(generated_text)
result = generated_text.split(response_split)[-1].strip()
return result
class PromptGenerator:
def __init__(
self,
prompt_template=TEMPLATE,
ai_prefix="Response",
user_prefix="Instruction",
sep: str = "\n\n### ",
buffer_size=0,
):
self.all_history = list()
self.ai_prefix = ai_prefix
self.user_prefix = user_prefix
self.buffer_size = buffer_size
self.prompt_template = prompt_template
self.sep = sep
def add_message(self, role, message):
self.all_history.append([role, message])
def get_images(self):
img_list = list()
if self.buffer_size > 0:
all_history = self.all_history[-2 * (self.buffer_size + 1):]
elif self.buffer_size == 0:
all_history = self.all_history[-2:]
else:
all_history = self.all_history[:]
for his in all_history:
if type(his[-1]) == tuple:
img_list.append(his[-1][-1])
return img_list
def get_prompt(self):
format_dict = dict()
if "{user_prefix}" in self.prompt_template:
format_dict["user_prefix"] = self.user_prefix
if "{ai_prefix}" in self.prompt_template:
format_dict["ai_prefix"] = self.ai_prefix
prompt_template = self.prompt_template.format(**format_dict)
ret = prompt_template
if self.buffer_size > 0:
all_history = self.all_history[-2 * (self.buffer_size + 1):]
elif self.buffer_size == 0:
all_history = self.all_history[-2:]
else:
all_history = self.all_history[:]
context = []
have_image = False
for role, message in all_history[::-1]:
if message:
if type(message) is tuple and message[
1] is not None and not have_image:
message, _ = message
context.append(self.sep + "Image:\n<image>" + self.sep +
role + ":\n" + message)
else:
context.append(self.sep + role + ":\n" + message)
else:
context.append(self.sep + role + ":\n")
ret += "".join(context[::-1])
return ret
def to_gradio_chatbot(prompt_generator):
ret = []
for i, (role, msg) in enumerate(prompt_generator.all_history):
if i % 2 == 0:
if type(msg) is tuple:
import base64
from io import BytesIO
msg, image = msg
if type(image) is str:
from PIL import Image
image = Image.open(image)
max_hw, min_hw = max(image.size), min(image.size)
aspect_ratio = max_hw / min_hw
max_len, min_len = 800, 400
shortest_edge = int(
min(max_len / aspect_ratio, min_len, min_hw))
longest_edge = int(shortest_edge * aspect_ratio)
H, W = image.size
if H > W:
H, W = longest_edge, shortest_edge
else:
H, W = shortest_edge, longest_edge
image = image.resize((H, W))
# image = image.resize((224, 224))
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
msg = msg + img_str
ret.append([msg, None])
else:
ret[-1][-1] = msg
return ret
def bot(
text,
image,
state,
prompt,
ai_prefix,
user_prefix,
seperator,
history_buffer,
max_new_token,
num_beams,
temperature,
top_k,
top_p,
do_sample,
):
state.prompt_template = prompt
state.ai_prefix = ai_prefix
state.user_prefix = user_prefix
state.sep = seperator
state.buffer_size = history_buffer
if image:
state.add_message(user_prefix, (text, image))
else:
state.add_message(user_prefix, text)
state.add_message(ai_prefix, None)
inputs = state.get_prompt()
image_paths = state.get_images()[-1:]
inference_results = inferencer(inputs, image_paths, max_new_token,
num_beams, temperature, top_k, top_p,
do_sample)
state.all_history[-1][-1] = inference_results
memory_allocated = str(round(torch.cuda.memory_allocated() / 1024**3,
2)) + 'GB'
return state, to_gradio_chatbot(state), "", None, inputs, memory_allocated
def clear(state):
state.all_history = []
return state, to_gradio_chatbot(state), "", None, ""
title_markdown = ("""
# 🤖 Multi-modal GPT
[[Project]](https://github.com/open-mmlab/Multimodal-GPT.git)""")
def build_conversation_demo():
with gr.Blocks(title="Multi-modal GPT") as demo:
gr.Markdown(title_markdown)
state = gr.State(PromptGenerator())
with gr.Row():
with gr.Column(scale=3):
memory_allocated = gr.Textbox(
value=init_memory, label="Memory")
imagebox = gr.Image(type="filepath")
# TODO config parameters
with gr.Accordion(
"Parameters",
open=True,
):
max_new_token_bar = gr.Slider(
0, 1024, 512, label="max_new_token", step=1)
num_beams_bar = gr.Slider(
0.0, 10, 3, label="num_beams", step=1)
temperature_bar = gr.Slider(
0.0, 1.0, 1.0, label="temperature", step=0.01)
topk_bar = gr.Slider(0, 100, 20, label="top_k", step=1)
topp_bar = gr.Slider(0, 1.0, 1.0, label="top_p", step=0.01)
do_sample = gr.Checkbox(True, label="do_sample")
with gr.Accordion(
"Prompt",
open=False,
):
with gr.Row():
ai_prefix = gr.Text("Response", label="AI Prefix")
user_prefix = gr.Text(
"Instruction", label="User Prefix")
seperator = gr.Text("\n\n### ", label="Seperator")
history_buffer = gr.Slider(
-1, 10, -1, label="History buffer", step=1)
prompt = gr.Text(TEMPLATE, label="Prompt")
model_inputs = gr.Textbox(label="Actual inputs for Model")
with gr.Column(scale=6):
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot(elem_id="chatbot").style(
height=750)
with gr.Row():
with gr.Column(scale=8):
textbox = gr.Textbox(
show_label=False,
placeholder="Enter text and press ENTER",
).style(container=False)
submit_btn = gr.Button(value="Submit")
clear_btn = gr.Button(value="🗑️ Clear history")
cur_dir = os.path.dirname(os.path.abspath(__file__))
gr.Examples(
examples=[
[
f"{cur_dir}/docs/images/demo_image.jpg",
"What is in this image?"
],
],
inputs=[imagebox, textbox],
)
textbox.submit(
bot,
[
textbox,
imagebox,
state,
prompt,
ai_prefix,
user_prefix,
seperator,
history_buffer,
max_new_token_bar,
num_beams_bar,
temperature_bar,
topk_bar,
topp_bar,
do_sample,
],
[
state, chatbot, textbox, imagebox, model_inputs,
memory_allocated
],
)
submit_btn.click(
bot,
[
textbox,
imagebox,
state,
prompt,
ai_prefix,
user_prefix,
seperator,
history_buffer,
max_new_token_bar,
num_beams_bar,
temperature_bar,
topk_bar,
topp_bar,
do_sample,
],
[
state, chatbot, textbox, imagebox, model_inputs,
memory_allocated
],
)
clear_btn.click(clear, [state],
[state, chatbot, textbox, imagebox, model_inputs])
return demo
if __name__ == "__main__":
llama_path = "checkpoints/llama-7b_hf"
open_flamingo_path = "checkpoints/OpenFlamingo-9B/checkpoint.pt"
finetune_path = "checkpoints/mmgpt-lora-v0-release.pt"
inferencer = Inferencer(
llama_path=llama_path,
open_flamingo_path=open_flamingo_path,
finetune_path=finetune_path)
init_memory = str(round(torch.cuda.memory_allocated() / 1024**3, 2)) + 'GB'
demo = build_conversation_demo()
demo.queue(concurrency_count=3)
IP = "0.0.0.0"
PORT = 8997
demo.launch(server_name=IP, server_port=PORT, share=True)