-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathconfig_filter.py
170 lines (141 loc) · 4.61 KB
/
config_filter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import collections.abc
import dataclasses
import enum
import logging
import dacite
import cnudie.iter
import reutil
logger = logging.getLogger(__name__)
class ComponentFilterSemantics(enum.StrEnum):
INCLUDE = 'include'
EXCLUDE = 'exclude'
@dataclasses.dataclass
class ConfigRule:
target: str
expression: str
matching_semantics: ComponentFilterSemantics
@dataclasses.dataclass
class MatchingConfig:
name: str
rules: list[ConfigRule]
def matching_configs_from_dicts(
dicts: collections.abc.Iterable[dict],
) -> list[MatchingConfig]:
return [
dacite.from_dict(
data_class=MatchingConfig,
data=d,
config=dacite.Config(
cast=[ComponentFilterSemantics]
)
) for d in dicts
]
def filter_for_matching_configs(
configs: collections.abc.Collection[MatchingConfig]
) -> collections.abc.Callable[[cnudie.iter.Node], bool]:
if not configs:
def match_all(node: cnudie.iter.Node):
return True
return match_all
# A filter for several matching configs is the combination of its constituent filters joined
# with a boolean OR
filters_from_configs = [
filter_for_matching_config(
config=config,
) for config in configs
]
return lambda node: any(
filter_func(node) for filter_func in filters_from_configs
)
def filter_for_matching_config(
config: MatchingConfig,
) -> collections.abc.Callable[[cnudie.iter.Node], bool]:
# A filter for a single matching configs is the combination of the filters for its rules joined
# with a boolean AND
rule_filters = [
filter_for_rule(
rule=rule,
) for rule in config.rules
]
return lambda node: all(
filter_func(node) for filter_func in rule_filters
)
def traverse_path(
obj: dict,
path: list[str],
absent_ok: bool=True,
):
'''
recursively traverse path to finally extract value, similar to `pydash.get`.
if `absent_ok` and path cannot be traversed, `None` is returned.
'''
if not (element := obj.get(path[0])):
if absent_ok:
return None
raise ValueError('element must not be empty, unable to traverse path')
if len(path) == 1:
return element
return traverse_path(
obj=element,
path=path[1:],
absent_ok=absent_ok,
)
def filter_for_rule(
rule: ConfigRule,
) -> collections.abc.Callable[[cnudie.iter.Node], bool]:
def to_str(value):
if isinstance(value, str):
return value
elif isinstance(value, bool):
return 'true' if value else 'false'
elif isinstance(value, int) or isinstance(value, float):
return str(value)
elif isinstance(value, enum.Enum):
return value.value
else:
logger.warning(f'selected {value=} is no scalar - matching will likely fail')
return str(value)
match rule.matching_semantics:
case ComponentFilterSemantics.INCLUDE:
re_filter = reutil.re_filter(
include_regexes=[rule.expression],
value_transformation=to_str,
)
case ComponentFilterSemantics.EXCLUDE:
re_filter = reutil.re_filter(
exclude_regexes=[rule.expression],
value_transformation=to_str,
)
case _:
raise NotImplementedError(rule.matching_semantics)
def filter_func(node: cnudie.iter.Node):
match rule.target.split('.'):
case ['component', *tail]:
return re_filter(
traverse_path(
obj=dataclasses.asdict(node.component),
path=tail,
)
)
case ['resource', *tail]:
# tail = ['extraIdentity', 'platform']
if not isinstance(node, cnudie.iter.ResourceNode):
return True
return re_filter(
traverse_path(
obj=dataclasses.asdict(node.resource),
path=tail,
)
)
case ['source', *tail]:
if not isinstance(node, cnudie.iter.SourceNode):
return True
return re_filter(
traverse_path(
obj=dataclasses.asdict(node.source),
path=tail,
)
)
case _:
raise ValueError(f"Unable to parse matching rule '{rule.target}'")
return filter_func