Skip to content

Latest commit

 

History

History
158 lines (110 loc) · 4.71 KB

README.md

File metadata and controls

158 lines (110 loc) · 4.71 KB

TLA+ Conformance Monitoring Tools

This project provides tools for conformance monitoring with TLA+.

See Conformance Monitoring with TLA+ for information about how to deploy and use conformance monitoring in µONOS.

Docker Image

This project provides a Docker image for running the TLA+ model checker (TLC).

Maven is used to build the Docker image:

$ mvn clean package

Building the project with Maven will build the onosproject/tlaplus-monitor:latest image.

When running the image with docker run, command-line arguments are passed through to the tlc command:

$ docker run -v ~/Foo:/opt/tlaplus/model -it onosproject/tlaplus-monitor:latest /opt/tlaplus/model/Foo.tla

Monitoring

The TLC Docker image extends TLC to facilitate conformance monitoring and provide cleaner syntax for conformance monitoring specifications. The TLC image supports the following additional flags:

  • -monitor - Runs TLC in monitoring mode
  • -source [source] - Sets the traces source URI (e.g. kafka://kafka-service:9092/traces)
  • -sink [sink] - Sets the alerts sink URI (e.g. kafka://kafka-service:9092/alerts)
  • -window [duration] - Sets the duration for sliding windows
$ docker run -v ~/Foo:/opt/tlaplus/model -it onosproject/tlaplus-monitor:latest /opt/tlaplus/model/Foo.tla -monitor -source kafka://kafka:9092/traces

TLA+ Operators

This project also provides custom TLA+ operators to assist in conformance monitoring with TLC in Docker.

Traces

The Traces module provides operators for consuming traces from an external system in TLA+. Trace consumer operators block until the next trace becomes available and parses JSON encoded values into TLA+ types. To use the Traces module, you must set the -source flag when running the Docker image or configure the TLC_TRACES_SOURCE environment variable with the source URI:

$ docker run -v ~/Foo:/opt/tlaplus/model -it onosproject/tlaplus-monitor:latest /opt/tlaplus/model/Foo.tla -monitor -source kafka://kafka:9092/traces

To consume traces, create an instance of the Traces module:

INSTANCE Traces

Call the Trace operator to consume the trace at a specific offset:

VARIABLE offset

INIT == offset = 0

NEXT ==
    /\ offset' = offset + 1
    /\ LET trace == Trace(offset') IN ...

Alerts

The Alerts module provides operators for publishing alerts to an external system from TLA+. To use the Alerts module, you must set the -sink flag when running the Docker image or configure the TLC_ALERTS_SINK environment variable with the URI to which to publish alerts:

$ docker run -v ~/Foo:/opt/tlaplus/model -it onosproject/tlaplus-monitor:latest /opt/tlaplus/model/Foo.tla -monitor -source kafka://kafka:9092/traces -sink kafka://kafka:9092/alerts

To publish alerts, create an instance of the Alerts module:

INSTANCE Alerts

Use the Alert operator to publish an alert to the configured sink:

LET alert == [msg = "Invariant violated", id |-> id]
IN Alert(alert)

JsonUtils

The JsonUtils module provides operators for reading and writing JSON files in TLA+. JSON input files must contain a valid JSON string on each newline, and JSON is output in the same format. The utility can read and write records, sequences, strings, and integers.

To read or write JSON files, create an instance of the JsonUtils module:

INSTANCE JsonUtils

The JsonDeserialize operator reads a JSON file into a sequence of values:

LET records == JsonDeserialize("/path/to/input.json")
IN ...

The JsonSerialize operator writes a sequence of values to a JSON file:

LET records == <<[id |-> 1, value |-> "foo"], [id |-> 2, value |-> "bar"], [id |-> 3, value |-> "baz"]>>
IN JsonSerialize("/path/to/output.json", records)

KafkaUtils

The KafkaUtils module provides operators for producing to and consuming from Kafka topics. Kafka messages are produced and consumed in JSON format using the JsonUtils parser.

To use the Kafka operators, create an instance of the KafkaUtils module:

INSTANCE KafkaUtils

To consume messages from a Kafka topic, use the KafkaConsume operator with the name of the topic:

LET record == KafkaConsume("my-topic") IN ...

To produce messages to a Kafka topic, use the KafkaProduce operator with the name of the topic and the value to send:

LET record == [id |-> 1, value |-> "foo"]
IN KafkaProduce("my-topic", record)

The KafkaProduce operator returns TRUE for convenient use in predicates.