
Infrastructure for Shape
Inference and Lowering

Alexandre Eichenberger

IBM Watson: Tong Chen, Alexandre Eichenberger, Kevin O’Brien, Gong Su.
Tokyo Research: Haruki Imai, Kiyo Kawachiya, Tung Le Duc, Yasushi Negishi.

Goals

• Shape Inference is used to determine the shape of tensors/memrefs:
• each ONNX operation defines its output as function of its input tensors,
• shapes are known at compile time, runtime, or combination of both.

• Shapes are needed at 2 key moments.
1. ONNX Shape Inference (ONNX transforms), where we don’t write low level code.

• Runtime shapes are defined at “-1”; symbolic analysis classifies relations between “-1”.
2. ONNX Lowering (e.g. ONNX to Krnl, Linalg, Tosa*, MHLO*,…).

• Runtime shapes are explicitly computed by code (e.g. Arith, Math, Shape).

• Observation:
• “Arithmetic on constant shape is the same as code generating shapes at runtime.”

• We want to write this code once, not once per ONNX->ONNX/Krnl/Linalg/…

Dec 2022 ONNX-MLIR Infrastructure 2

We introduce 3 key classes

• Index expressions (IndexExpr and subclasses)
• Polymorphic class that represent computations over shapes (e.g. add/ceil/select…).
• ONNX Shape Inference: generate literal values or question marks (aka “-1”).
• Shape Lowering: generate literals or create operations that compute shapes at runtime.

• Index expression builder (IndexExprBuilder and subclasses)
• Data structure that extract shape info from graph: attribute, arrays (constant or not), shapes.
• Each dialect constructs its own subclass (e.g. for ONNX/Analysis, KRNL, MHLO).

• ShapeHelper (ONNXOpShapeHelper and subclasses)
• Encapsulate how to compute the shape for a give ONNX operation.
• Each ONNX operation defines its own/reuse a subclass.

Dec 2022 ONNX-MLIR Infrastructure 3

I. IndexExpr

• IndexExpr (IE): subclasses represent shape values.
• IndexExpr are one of 7 subclasses.
• Result of constant/affine/nonaffine computations (Literal/Affine/NonAffine IndexExpr).
• Result of compares (Predicate IndexExpr).
• Runtime inputs are classified as dims or symbols (Dim/Symbol IE, see affine dialect for details).
• Unknown-at-compile-time/undefined (Questionmark/Undefined IndexExpr).

• Queries/Getters
• hasAffineExpr(), hasValue(); isDefined(), isLiteral(), isAffine(), isDim(), isSymbol()…
• getLiteral(), getAffineExpr(), getValue().

• Operations:
• +/-, */floor/ceil, min/max, select, comparators (==, <=, >=,…)

Dec 2022 ONNX-MLIR Infrastructure 4

Common

among dialects
and ops

I. IndexExpr (cont.)

• Index expressions are polymorphic
• associated with a builder -> can generate code
• not associated with a builder -> runtime are represented with question marks (”-1”).

• All index expressions are part of a scope (IndexExprScope)
• repository of all IndexExpr of any kinds
• scope can be nested

• e.g. an index variable in one loop (Dim) can become an invariant (Symbol) in a nested loop.
• IndexExpr can only be used in the scope they are defined (exception: literals).
• IndexExpr from an outer scope can be imported into current scope.
• In a given scope, an input cannot be both a Dim and a Symbol.

Dec 2022 ONNX-MLIR Infrastructure 5

II. IndexExprBuilder

• Class describes how to extract values needed for shape inferences.
• Extracting values from attributes:

• getIntFromArrayAsLiteral (attr, i) returns a LiteralIE from the attribute at index i.
• getIntFromArrayAsLiterals (attr, list) fills the list with LiteralIE from the attribute.

• Extracting values from constants/computations:
• getIntFromArrayAsSymbol (value, i) retrieves the defining operation of value:

• If it is a constant operation, returns that constant as LiteralIE (literals are parts of affine symbol).
• If is not a constant, return that value as a QuestionmarkIE or SymbolIE depending on the phase.

• Extracting shapes from variables:
• getShapeAsDim(value, i) retrieves the shape defined by the type of value.

• returns LiteralIE, QuestionmarkIE, or DimIE depending on constant and/or phase.

• Many more calls are available.

Dec 2022 ONNX-MLIR Infrastructure 6

One per dialect

II. IndexExprBuilder (cont)

• There are 3 subclasses currently defined:
• IndexExprBuilderForAnalysis / IndexExprBuilderForKrnl / IndexExprBuilderForMhlo

• Each subclass must define 3 pure virtual functions:
• getConst: returns a constant’s DenseElementAttribute.
• getValue: returns a value from an array at a given location.
• getShape: returns a shape from a value’s type.

• These virtual functions are dialect / phase dependent:
• e.g. runtime variables are returned as QuestionmarkIE during Shape Inference Analysis.
• e.g. constants are found in ONNXConstantOp in ONNX, KrnlGlobalOp in Krnl.

• All the IndexExprBuilder functionality is built on these 3 functions.

Dec 2022 ONNX-MLIR Infrastructure 7

III. ONNXOpShapeHelper

• Each operation defines/reuse a subclass to encapsulate its shape computations
• They all share a unique set of parameter for their constructor.
• They all define a virtual computeShape function to perform the computations.

• The shapes are retrieved using getOutputDims(i), returning a list of index expressions.
• Some operations define additional useful values.

• e.g. Normalized pad, kernel sizes for ONNXConvOp.
• e.g. Reduction dimensions for ONNXReduceSumOp.

Dec 2022 ONNX-MLIR Infrastructure 8

One per ONNX
op

III. ONNXOpShapeHelper (cont.)

• Subclasses need a constructor with (op, operands, index builder, scope) parameters:
• op: Operation being analyzed.
• operand: list of explicit operands (e.g. during lowering). If none given, use the ones currently

associated with op.
• index builder: index builder that is used to create the index expressions being investigated.
• scope: index expression to use; create one if none provided.

• Subclasses need a computeShape() method,
• Compute the shape for the given op/operands. Depending on the index builder passed,

code may be generated to materialize the shapes.

• ONNXOpShapeHelper provides a lot of functionality to help streamline shape
inference

Dec 2022 ONNX-MLIR Infrastructure 9

