-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_dataset.py
186 lines (148 loc) · 5.58 KB
/
build_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from src.sat_generator import URGenerator, SRGenerator
from src.solvers import minisat_solver
import numpy as np
from tqdm import tqdm
def toy_dataset():
"""
Builds a toy dataset with Satisfiable Random SAT Formulas.
This function generates 5 uniform random sat instances
for each of the following combinations of parameters:
k=3
n=[5, 10, 15]
r=[1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]:
"""
print("Building toy_dataset")
# Build Uniform random instances
dir_name = 'data/toy'
data_name = 'toy'
n_list = [5, 10, 15]
r_list = [1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]
k = 3
num_instances = 5
np.random.seed(855104)
for n in tqdm(n_list):
for r in r_list:
m = int(np.around(n * r))
# Instantiate a sat generator
sat_gen = URGenerator(min_n=n,
max_n=n,
min_k=k,
max_k=k,
min_m=m,
max_m=m)
sat_clauses = 0
while sat_clauses < num_instances:
# Create a uniform random sat formula
n, m, r, formula = sat_gen.generate_formula()
# Using minisat_solver to check satifiability
assignment, is_sat = minisat_solver(n, formula)
if is_sat:
sat_clauses += 1
# Saving the formula
filename = sat_gen.get_filename(dir_name, data_name, sat_clauses)
sat_gen.save(n, formula, filename)
def rand_dataset():
"""
This function generates the following instances:
For k=3 and n=[10, 20, 30, ..., 100]:
- 5 Uniform random instances with r=[1.0, 1.5, ..., 4.5]
"""
print("Building rand_dataset")
# Build Uniform random instances
dir_name = 'data/rand'
data_name = 'rand'
n_list = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
r_list = [1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5]
k = 3
num_instances = 5
np.random.seed(98702)
for n in tqdm(n_list):
for r in r_list:
m = int(np.around(n * r))
dir_name1 = f'{dir_name}/{n:04d}/{m:04d}'
# Instantiate a sat generator
sat_gen = URGenerator(min_n=n,
max_n=n,
min_k=k,
max_k=k,
min_m=m,
max_m=m)
for i in range(1, num_instances + 1):
# Create a uniform random sat formula
n, m, r, formula = sat_gen.generate_formula()
# Saving the formula
filename = sat_gen.get_filename(dir_name1, data_name, i)
sat_gen.save(n, formula, filename)
def sat_rand_dataset():
"""
Builds a dataset with Satisfiable Random SAT Formulas.
This function generates 5 uniform random sat instances
for each of the following combinations of parameters:
k=3
n=[20, 30, 40]
r=[2.0, 2.5, 3.0, 3.5, 4.0, 4.5]:
"""
print("Building sat_rand_dataset")
# Build Uniform random instances
dir_name = 'data/sat_rand'
data_name = 'sat_rand'
n_list = [20, 30, 40, 50, 60, 70, 80, 90, 100]
r_list = [2.0, 2.5, 3.0, 3.5, 4.0, 4.5]
k = 3
num_instances = 5
np.random.seed(104873)
for n in tqdm(n_list):
for r in r_list:
m = int(np.around(n * r))
# Instantiate a sat generator
sat_gen = URGenerator(min_n=n,
max_n=n,
min_k=k,
max_k=k,
min_m=m,
max_m=m)
sat_clauses = 0
while sat_clauses < num_instances:
# Create a uniform random sat formula
n, m, r, formula = sat_gen.generate_formula()
# Using minisat_solver to check satifiability
assignment, is_sat = minisat_solver(n, formula)
if is_sat:
sat_clauses += 1
# Saving the formula
filename = sat_gen.get_filename(dir_name, data_name, sat_clauses)
sat_gen.save(n, formula, filename)
def sr_dataset():
"""
This function generates the following instances:
For n=[20, 30, 40]:
- 5 SR instances with k = 1 + B(0.7) + G(0.4)
"""
print("Building sr_dataset")
# Build SR random instances
dir_name = 'data/sr'
data_name = 'sr'
n_list = [20, 30, 40]
p_bernoulli = 0.7
p_geometric = 0.4
num_instances = 5
np.random.seed(14650)
for n in tqdm(n_list):
# Instantiate a sat generator
sat_gen = SRGenerator(n=n,
p_bernoulli=p_bernoulli,
p_geometric=p_geometric)
for i in range(1, num_instances + 1):
# Create a uniform random sat formula
n, m, r, [formula_unsat, formula_sat] = sat_gen.generate_formula()
# Saving the sat formula.
filename = sat_gen.get_filename(dir_name, data_name, True, i)
sat_gen.save(n, formula_sat, filename)
# Saving the unsat formula
filename = sat_gen.get_filename(dir_name, data_name, False, i)
sat_gen.save(n, formula_unsat, filename)
if __name__ == '__main__':
#toy_dataset()
rand_dataset()
#sat_rand_dataset()
#sr_dataset()