-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathhyperparameter-electra.py
181 lines (150 loc) · 6.55 KB
/
hyperparameter-electra.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from datasets import load_dataset, load_metric
from dataset import load
from datasets import Dataset, Features, ClassLabel, Value
from transformers import AutoTokenizer
from transformers import AutoModelForTokenClassification, TrainingArguments, Trainer
from sklearn.metrics import accuracy_score, precision_recall_fscore_support, classification_report
import numpy as np
import numpy.ma as ma
from transformers import DataCollatorForTokenClassification
from tqdm import tqdm
import datetime
task = "task1" # Should be one of "ner", "pos" or "chunk"
model_checkpoint = "german-nlp-group/electra-base-german-uncased"
#model_checkpoint = "dbmdz/bert-base-german-uncased"#"distilbert-base-german-cased"
run_name= f"{model_checkpoint}-{task}"
run_name = run_name.replace("/","-") + " " + str(datetime.datetime.now())[:-7]
batch_size = 8
label_all_tokens = True
data_factor = 1 # train and test on x percent of the data
## load data
val_data = load("data/sepp_nlg_2021_train_dev_data.zip","dev","de")
train_data = load("data/sepp_nlg_2021_train_dev_data.zip","train","de")
## tokenize data
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint,strip_accent=False)
def tokenize_and_align_data(data,stride=0):
tokenizer_settings = {'is_split_into_words':True,'return_offsets_mapping':True,
'padding':False, 'truncation':True, 'stride':stride,
'max_length':tokenizer.model_max_length, 'return_overflowing_tokens':True}
tokenized_inputs = tokenizer(data[0], **tokenizer_settings)
labels = []
for i,document in enumerate(tokenized_inputs.encodings):
doc_encoded_labels = []
last_word_id = None
for word_id in document.word_ids:
if word_id == None: #or last_word_id == word_id:
doc_encoded_labels.append(-100)
else:
#document_id = tokenized_inputs.overflow_to_sample_mapping[i]
#label = examples[task][document_id][word_id]
label = data[1][word_id]
doc_encoded_labels.append(int(label))
last_word_id = word_id
labels.append(doc_encoded_labels)
tokenized_inputs["labels"] = labels
return tokenized_inputs
def to_dataset(data,stride=0):
labels, token_type_ids, input_ids, attention_masks = [],[],[],[]
for item in tqdm(data):
result = tokenize_and_align_data(item,stride=stride)
labels += result['labels']
token_type_ids += result['token_type_ids']
input_ids += result['input_ids']
attention_masks += result['attention_mask']
return Dataset.from_dict({'labels': labels, 'token_type_ids':token_type_ids, 'input_ids':input_ids, 'attention_mask':attention_masks})
train_data = train_data[:int(len(train_data)*data_factor)] # limit data to x%
print("tokenize training data")
tokenized_dataset_train = to_dataset(train_data,stride=100)
del train_data
print("tokenize validation data")
val_data = val_data[:int(len(val_data)*(data_factor*5))] # limit data to x%
tokenized_dataset_val = to_dataset(val_data)
del val_data
## metrics
def compute_metrics_sklearn(pred):
mask = np.less(pred.label_ids,0) # mask out -100 values
labels = ma.masked_array(pred.label_ids,mask).compressed()
preds = ma.masked_array(pred.predictions.argmax(-1),mask).compressed()
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='binary')
acc = accuracy_score(labels, preds)
return {
'f1': f1,
'precision': precision,
'recall': recall,
'accuracy':acc,
}
## train model
args = TrainingArguments(
output_dir=f"models/{run_name}/checkpoints",
run_name=run_name,
evaluation_strategy = "epoch",
learning_rate=2e-5,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
num_train_epochs=1,
adafactor=False,
#weight_decay=0.005,
warmup_steps=50,
#lr_scheduler_type="cosine",
#report_to=["tensorboard"],
#logging_dir='runs/'+run_name, # directory for storing logs
#logging_first_step=True,
#logging_steps=500,
save_steps= 10000,
save_total_limit=10,
seed=100,
fp16=True
)
data_collator = DataCollatorForTokenClassification(tokenizer)
def model_init():
return AutoModelForTokenClassification.from_pretrained(model_checkpoint, num_labels=2)
#return AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=True)
trainer = Trainer(
model_init=model_init,
args = args,
train_dataset=tokenized_dataset_train,
eval_dataset=tokenized_dataset_val,
data_collator=data_collator,
tokenizer=tokenizer,
compute_metrics=compute_metrics_sklearn
)
trainer.train()
#trainer.save_model(f"models/{run_name}/final")
import gc
import torch
def my_hp_space(trial):
gc.collect()
torch.cuda.empty_cache()
return {
"learning_rate": trial.suggest_float("learning_rate", 1e-5, 1e-2, log=True),
"num_train_epochs": trial.suggest_int("num_train_epochs", 1,5),
# "seed": trial.suggest_int("seed", 1, 40),
"per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [4, 8, 10]),
"weight_decay": trial.suggest_float("weight_decay", 1e-12, 1e-1, log=True),
"adam_epsilon": trial.suggest_float("adam_epsilon", 1e-10, 1e-6, log=True),
"gradient_accumulation_steps": trial.suggest_categorical("gradient_accumulation_steps", [1,2,4,8]),
}
#
#trainer.hyperparameter_search(direction="maximize", hp_space=my_hp_space)
#def my_hp_space_ray(trial):
# from ray import tune
#
# return {
# "learning_rate": tune.loguniform(1e-4, 1e-2),
# "num_train_epochs": tune.choice(range(1, 6)),
# "seed": tune.choice(range(1, 41)),
# "per_device_train_batch_size": tune.choice([4, 8, 16, 32, 64]),
# }
#
#trainer.hyperparameter_search(direction="maximize", hp_space=my_hp_space)
def my_objective(metrics):
# Your elaborate computation here
return metrics['eval_f1']
result = trainer.hyperparameter_search(direction="maximize",n_trials=100,hp_space=my_hp_space, compute_objective=my_objective)
print("---- result ----")
print(result)
with open("hyperparamert-electra.txt", "w") as f:
print(result,file=f)
f.close()
#
#BestRun(run_id='1', objective=0.9412869643435874, hyperparameters={'learning_rate': 0.0001945679450337696, 'num_train_epochs': 4, 'per_device_train_batch_size': 8, 'weight_decay': 1.4664229179484889e-09, 'adam_epsilon': 2.178754400098753e-07, 'gradient_accumulation_steps': 4})