-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathflops_counter.py
578 lines (461 loc) · 19.7 KB
/
flops_counter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
'''
Copyright (C) 2019 Sovrasov V. - All Rights Reserved
* You may use, distribute and modify this code under the
* terms of the MIT license.
* You should have received a copy of the MIT license with
* this file. If not visit https://opensource.org/licenses/MIT
'''
import sys
from functools import partial
import numpy as np
import torch
import torch.nn as nn
from timm.models.vision_transformer import Attention as Attention_vit
from models.localvit import Attention as Attention_conv_vit
from models.tnt import Attention as Attention_tnt
from models.pvt import Attention as Attention_pvt
from models.transformer_block import Attention as Attention_t2t
from models.token_transformer import Attention as Attention_t2t_t
def get_model_complexity_info(model, input_res,
print_per_layer_stat=True,
as_strings=True,
input_constructor=None, ost=sys.stdout,
verbose=False, ignore_modules=[],
custom_modules_hooks={}):
assert type(input_res) is tuple
assert len(input_res) >= 1
assert isinstance(model, nn.Module)
global CUSTOM_MODULES_MAPPING
CUSTOM_MODULES_MAPPING = custom_modules_hooks
flops_model = add_flops_counting_methods(model)
flops_model.eval()
flops_model.start_flops_count(ost=ost, verbose=verbose,
ignore_list=ignore_modules)
if input_constructor:
input = input_constructor(input_res)
_ = flops_model(**input)
else:
try:
batch = torch.ones(()).new_empty((1, *input_res),
dtype=next(flops_model.parameters()).dtype,
device=next(flops_model.parameters()).device)
except StopIteration:
batch = torch.ones(()).new_empty((1, *input_res))
_ = flops_model(batch)
flops_count, params_count = flops_model.compute_average_flops_cost()
if print_per_layer_stat:
print_model_with_flops(flops_model, flops_count, params_count, ost=ost)
flops_model.stop_flops_count()
CUSTOM_MODULES_MAPPING = {}
if as_strings:
return flops_to_string(flops_count), params_to_string(params_count)
return flops_count, params_count
def flops_to_string(flops, units='GMac', precision=2):
if units is None:
if flops // 10**9 > 0:
return str(round(flops / 10.**9, precision)) + ' GMac'
elif flops // 10**6 > 0:
return str(round(flops / 10.**6, precision)) + ' MMac'
elif flops // 10**3 > 0:
return str(round(flops / 10.**3, precision)) + ' KMac'
else:
return str(flops) + ' Mac'
else:
if units == 'GMac':
return str(round(flops / 10.**9, precision)) + ' ' + units
elif units == 'MMac':
return str(round(flops / 10.**6, precision)) + ' ' + units
elif units == 'KMac':
return str(round(flops / 10.**3, precision)) + ' ' + units
else:
return str(flops) + ' Mac'
def params_to_string(params_num, units=None, precision=2):
if units is None:
if params_num // 10 ** 6 > 0:
return str(round(params_num / 10 ** 6, 2)) + ' M'
elif params_num // 10 ** 3:
return str(round(params_num / 10 ** 3, 2)) + ' k'
else:
return str(params_num)
else:
if units == 'M':
return str(round(params_num / 10.**6, precision)) + ' ' + units
elif units == 'K':
return str(round(params_num / 10.**3, precision)) + ' ' + units
else:
return str(params_num)
def accumulate_flops(self):
if is_supported_instance(self):
return self.__flops__
else:
sum = 0
for m in self.children():
sum += m.accumulate_flops()
return sum
def print_model_with_flops(model, total_flops, total_params, units='GMac',
precision=3, ost=sys.stdout):
def accumulate_params(self):
if is_supported_instance(self):
return self.__params__
else:
sum = 0
for m in self.children():
sum += m.accumulate_params()
return sum
def flops_repr(self):
accumulated_params_num = self.accumulate_params()
accumulated_flops_cost = self.accumulate_flops() / model.__batch_counter__
return ', '.join([params_to_string(accumulated_params_num,
units='M', precision=precision),
'{:.3%} Params'.format(accumulated_params_num / total_params),
flops_to_string(accumulated_flops_cost,
units=units, precision=precision),
'{:.3%} MACs'.format(accumulated_flops_cost / total_flops),
self.original_extra_repr()])
def add_extra_repr(m):
m.accumulate_flops = accumulate_flops.__get__(m)
m.accumulate_params = accumulate_params.__get__(m)
flops_extra_repr = flops_repr.__get__(m)
if m.extra_repr != flops_extra_repr:
m.original_extra_repr = m.extra_repr
m.extra_repr = flops_extra_repr
assert m.extra_repr != m.original_extra_repr
def del_extra_repr(m):
if hasattr(m, 'original_extra_repr'):
m.extra_repr = m.original_extra_repr
del m.original_extra_repr
if hasattr(m, 'accumulate_flops'):
del m.accumulate_flops
model.apply(add_extra_repr)
print(repr(model), file=ost)
model.apply(del_extra_repr)
def get_model_parameters_number(model):
params_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
return params_num
def add_flops_counting_methods(net_main_module):
# adding additional methods to the existing module object,
# this is done this way so that each function has access to self object
net_main_module.start_flops_count = start_flops_count.__get__(net_main_module)
net_main_module.stop_flops_count = stop_flops_count.__get__(net_main_module)
net_main_module.reset_flops_count = reset_flops_count.__get__(net_main_module)
net_main_module.compute_average_flops_cost = compute_average_flops_cost.__get__(
net_main_module)
net_main_module.reset_flops_count()
return net_main_module
def compute_average_flops_cost(self):
"""
A method that will be available after add_flops_counting_methods() is called
on a desired net object.
Returns current mean flops consumption per image.
"""
for m in self.modules():
m.accumulate_flops = accumulate_flops.__get__(m)
flops_sum = self.accumulate_flops()
for m in self.modules():
if hasattr(m, 'accumulate_flops'):
del m.accumulate_flops
params_sum = get_model_parameters_number(self)
return flops_sum / self.__batch_counter__, params_sum
def start_flops_count(self, **kwargs):
"""
A method that will be available after add_flops_counting_methods() is called
on a desired net object.
Activates the computation of mean flops consumption per image.
Call it before you run the network.
"""
add_batch_counter_hook_function(self)
seen_types = set()
def add_flops_counter_hook_function(module, ost, verbose, ignore_list):
if type(module) in ignore_list:
seen_types.add(type(module))
if is_supported_instance(module):
module.__params__ = 0
elif is_supported_instance(module):
if hasattr(module, '__flops_handle__'):
return
if type(module) in CUSTOM_MODULES_MAPPING:
handle = module.register_forward_hook(
CUSTOM_MODULES_MAPPING[type(module)])
else:
handle = module.register_forward_hook(MODULES_MAPPING[type(module)])
module.__flops_handle__ = handle
seen_types.add(type(module))
else:
if verbose and not type(module) in (nn.Sequential, nn.ModuleList) and \
not type(module) in seen_types:
print('Warning: module ' + type(module).__name__ +
' is treated as a zero-op.', file=ost)
seen_types.add(type(module))
self.apply(partial(add_flops_counter_hook_function, **kwargs))
def stop_flops_count(self):
"""
A method that will be available after add_flops_counting_methods() is called
on a desired net object.
Stops computing the mean flops consumption per image.
Call whenever you want to pause the computation.
"""
remove_batch_counter_hook_function(self)
self.apply(remove_flops_counter_hook_function)
def reset_flops_count(self):
"""
A method that will be available after add_flops_counting_methods() is called
on a desired net object.
Resets statistics computed so far.
"""
add_batch_counter_variables_or_reset(self)
self.apply(add_flops_counter_variable_or_reset)
# ---- Internal functions
def empty_flops_counter_hook(module, input, output):
module.__flops__ += 0
def upsample_flops_counter_hook(module, input, output):
output_size = output[0]
batch_size = output_size.shape[0]
output_elements_count = batch_size
for val in output_size.shape[1:]:
output_elements_count *= val
module.__flops__ += int(output_elements_count)
def relu_flops_counter_hook(module, input, output):
active_elements_count = output.numel()
module.__flops__ += int(active_elements_count)
def linear_flops_counter_hook(module, input, output):
input = input[0]
# pytorch checks dimensions, so here we don't care much
output_last_dim = output.shape[-1]
bias_flops = output_last_dim if module.bias is not None else 0
module.__flops__ += int(np.prod(input.shape) * output_last_dim + bias_flops)
def pool_flops_counter_hook(module, input, output):
input = input[0]
module.__flops__ += int(np.prod(input.shape))
def bn_flops_counter_hook(module, input, output):
input = input[0]
batch_flops = np.prod(input.shape)
if module.affine:
batch_flops *= 2
module.__flops__ += int(batch_flops)
def conv_flops_counter_hook(conv_module, input, output):
# Can have multiple inputs, getting the first one
input = input[0]
batch_size = input.shape[0]
output_dims = list(output.shape[2:])
kernel_dims = list(conv_module.kernel_size)
in_channels = conv_module.in_channels
out_channels = conv_module.out_channels
groups = conv_module.groups
filters_per_channel = out_channels // groups
conv_per_position_flops = int(np.prod(kernel_dims)) * \
in_channels * filters_per_channel
active_elements_count = batch_size * int(np.prod(output_dims))
overall_conv_flops = conv_per_position_flops * active_elements_count
bias_flops = 0
if conv_module.bias is not None:
bias_flops = out_channels * active_elements_count
overall_flops = overall_conv_flops + bias_flops
conv_module.__flops__ += int(overall_flops)
def attn_flops_counter_hook(attn_module, input, output):
input = input[0]
batch_size, num_token, embed_dim = input.shape
num_heads = attn_module.num_heads
head_dim = embed_dim // num_heads
# q, k, v flops
qkv_flops = attn_module.qkv.__flops__
# q @ k flops
if isinstance(attn_module, Attention_conv_vit):
qk_dim = attn_module.qk_dim
qk_head_dim = qk_dim // num_heads
qk_flops = batch_size * num_heads * num_token * num_token * qk_head_dim
else:
qk_flops = batch_size * num_heads * num_token * num_token * head_dim
# attn @ v flops
attn_v_flops = batch_size * num_heads * num_token * num_token * head_dim
# projection flops
projection_flops = attn_module.proj.__flops__
# overall_flops = qk_flops + attn_v_flops
overall_flops = qkv_flops + qk_flops + attn_v_flops + projection_flops
attn_module.__flops__ += int(overall_flops)
def attn_tnt_flops_counter_hook(attn_module, input, output):
input = input[0]
batch_size, num_token, embed_dim = input.shape
num_heads = attn_module.num_heads
hidden_dim = attn_module.hidden_dim
# q, k, v flops
qkv_flops = attn_module.qk.__flops__ + attn_module.v.__flops__
# q @ k flops
qk_flops = batch_size * num_heads * num_token * num_token * hidden_dim // num_heads
# attn @ v flops
attn_v_flops = batch_size * num_heads * num_token * num_token * embed_dim // num_heads
# projection flops
projection_flops = attn_module.proj.__flops__
overall_flops = qkv_flops + qk_flops + attn_v_flops + projection_flops
attn_module.__flops__ += int(overall_flops)
def attn_pvt_flops_counter_hook(attn_module, input, output):
input = input[0]
batch_size, num_token, embed_dim = input.shape
num_heads = attn_module.num_heads
# q, k, v flops
qkv_flops = attn_module.q.__flops__ + attn_module.kv.__flops__
if attn_module.sr_ratio > 1:
qkv_flops += attn_module.sr.__flops__
# q @ k flops
qk_flops = batch_size * num_heads * num_token * num_token * embed_dim // num_heads
# attn @ v flops
attn_v_flops = batch_size * num_heads * num_token * num_token * embed_dim // num_heads
# projection flops
projection_flops = attn_module.proj.__flops__
overall_flops = qkv_flops + qk_flops + attn_v_flops + projection_flops
attn_module.__flops__ += int(overall_flops)
def batch_counter_hook(module, input, output):
batch_size = 1
if len(input) > 0:
# Can have multiple inputs, getting the first one
input = input[0]
batch_size = len(input)
else:
pass
print('Warning! No positional inputs found for a module,'
' assuming batch size is 1.')
module.__batch_counter__ += batch_size
def rnn_flops(flops, rnn_module, w_ih, w_hh, input_size):
# matrix matrix mult ih state and internal state
flops += w_ih.shape[0]*w_ih.shape[1]
# matrix matrix mult hh state and internal state
flops += w_hh.shape[0]*w_hh.shape[1]
if isinstance(rnn_module, (nn.RNN, nn.RNNCell)):
# add both operations
flops += rnn_module.hidden_size
elif isinstance(rnn_module, (nn.GRU, nn.GRUCell)):
# hadamard of r
flops += rnn_module.hidden_size
# adding operations from both states
flops += rnn_module.hidden_size*3
# last two hadamard product and add
flops += rnn_module.hidden_size*3
elif isinstance(rnn_module, (nn.LSTM, nn.LSTMCell)):
# adding operations from both states
flops += rnn_module.hidden_size*4
# two hadamard product and add for C state
flops += rnn_module.hidden_size + rnn_module.hidden_size + rnn_module.hidden_size
# final hadamard
flops += rnn_module.hidden_size + rnn_module.hidden_size + rnn_module.hidden_size
return flops
def rnn_flops_counter_hook(rnn_module, input, output):
"""
Takes into account batch goes at first position, contrary
to pytorch common rule (but actually it doesn't matter).
IF sigmoid and tanh are made hard, only a comparison FLOPS should be accurate
"""
flops = 0
# input is a tuple containing a sequence to process and (optionally) hidden state
inp = input[0]
batch_size = inp.shape[0]
seq_length = inp.shape[1]
num_layers = rnn_module.num_layers
for i in range(num_layers):
w_ih = rnn_module.__getattr__('weight_ih_l' + str(i))
w_hh = rnn_module.__getattr__('weight_hh_l' + str(i))
if i == 0:
input_size = rnn_module.input_size
else:
input_size = rnn_module.hidden_size
flops = rnn_flops(flops, rnn_module, w_ih, w_hh, input_size)
if rnn_module.bias:
b_ih = rnn_module.__getattr__('bias_ih_l' + str(i))
b_hh = rnn_module.__getattr__('bias_hh_l' + str(i))
flops += b_ih.shape[0] + b_hh.shape[0]
flops *= batch_size
flops *= seq_length
if rnn_module.bidirectional:
flops *= 2
rnn_module.__flops__ += int(flops)
def rnn_cell_flops_counter_hook(rnn_cell_module, input, output):
flops = 0
inp = input[0]
batch_size = inp.shape[0]
w_ih = rnn_cell_module.__getattr__('weight_ih')
w_hh = rnn_cell_module.__getattr__('weight_hh')
input_size = inp.shape[1]
flops = rnn_flops(flops, rnn_cell_module, w_ih, w_hh, input_size)
if rnn_cell_module.bias:
b_ih = rnn_cell_module.__getattr__('bias_ih')
b_hh = rnn_cell_module.__getattr__('bias_hh')
flops += b_ih.shape[0] + b_hh.shape[0]
flops *= batch_size
rnn_cell_module.__flops__ += int(flops)
def add_batch_counter_variables_or_reset(module):
module.__batch_counter__ = 0
def add_batch_counter_hook_function(module):
if hasattr(module, '__batch_counter_handle__'):
return
handle = module.register_forward_hook(batch_counter_hook)
module.__batch_counter_handle__ = handle
def remove_batch_counter_hook_function(module):
if hasattr(module, '__batch_counter_handle__'):
module.__batch_counter_handle__.remove()
del module.__batch_counter_handle__
def add_flops_counter_variable_or_reset(module):
if is_supported_instance(module):
if hasattr(module, '__flops__') or hasattr(module, '__params__'):
print('Warning: variables __flops__ or __params__ are already '
'defined for the module' + type(module).__name__ +
' ptflops can affect your code!')
module.__flops__ = 0
module.__params__ = get_model_parameters_number(module)
CUSTOM_MODULES_MAPPING = {}
MODULES_MAPPING = {
# convolutions
nn.Conv1d: conv_flops_counter_hook,
nn.Conv2d: conv_flops_counter_hook,
nn.Conv3d: conv_flops_counter_hook,
# activations
nn.ReLU: relu_flops_counter_hook,
nn.PReLU: relu_flops_counter_hook,
nn.ELU: relu_flops_counter_hook,
nn.LeakyReLU: relu_flops_counter_hook,
nn.ReLU6: relu_flops_counter_hook,
# poolings
nn.MaxPool1d: pool_flops_counter_hook,
nn.AvgPool1d: pool_flops_counter_hook,
nn.AvgPool2d: pool_flops_counter_hook,
nn.MaxPool2d: pool_flops_counter_hook,
nn.MaxPool3d: pool_flops_counter_hook,
nn.AvgPool3d: pool_flops_counter_hook,
nn.AdaptiveMaxPool1d: pool_flops_counter_hook,
nn.AdaptiveAvgPool1d: pool_flops_counter_hook,
nn.AdaptiveMaxPool2d: pool_flops_counter_hook,
nn.AdaptiveAvgPool2d: pool_flops_counter_hook,
nn.AdaptiveMaxPool3d: pool_flops_counter_hook,
nn.AdaptiveAvgPool3d: pool_flops_counter_hook,
# BNs
nn.BatchNorm1d: bn_flops_counter_hook,
nn.BatchNorm2d: bn_flops_counter_hook,
nn.BatchNorm3d: bn_flops_counter_hook,
# FC
nn.Linear: linear_flops_counter_hook,
# Upscale
nn.Upsample: upsample_flops_counter_hook,
# Deconvolution
nn.ConvTranspose1d: conv_flops_counter_hook,
nn.ConvTranspose2d: conv_flops_counter_hook,
nn.ConvTranspose3d: conv_flops_counter_hook,
# RNN
nn.RNN: rnn_flops_counter_hook,
nn.GRU: rnn_flops_counter_hook,
nn.LSTM: rnn_flops_counter_hook,
nn.RNNCell: rnn_cell_flops_counter_hook,
nn.LSTMCell: rnn_cell_flops_counter_hook,
nn.GRUCell: rnn_cell_flops_counter_hook,
Attention_vit: attn_flops_counter_hook,
Attention_conv_vit: attn_flops_counter_hook,
Attention_tnt: attn_tnt_flops_counter_hook,
Attention_pvt: attn_pvt_flops_counter_hook,
Attention_t2t: attn_flops_counter_hook,
Attention_t2t_t: attn_flops_counter_hook
}
def is_supported_instance(module):
if type(module) in MODULES_MAPPING or type(module) in CUSTOM_MODULES_MAPPING:
return True
return False
def remove_flops_counter_hook_function(module):
if is_supported_instance(module):
if hasattr(module, '__flops_handle__'):
module.__flops_handle__.remove()
del module.__flops_handle__