-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterpolate.f90
134 lines (100 loc) · 4.98 KB
/
interpolate.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
module m_interpolate
! module for linear interpolation functions
implicit none
! set functions to private by default
private
public :: vector_interp_3d
contains
! interpolate values from a 3d vector field grid
pure function vector_interp_3d(x,y,z,inv_dx,inv_dy,inv_dz,x_arr,y_arr,z_arr,f_arr) result(f)
! argument declarations
real(kind=8),intent(in) :: x ! x position
real(kind=8),intent(in) :: y ! y position
real(kind=8),intent(in) :: z ! z position
real(kind=8),intent(in) :: inv_dx ! 1/dx
real(kind=8),intent(in) :: inv_dy ! 1/dy
real(kind=8),intent(in) :: inv_dz ! 1/dz
real(kind=8),intent(in) :: x_arr(:) ! array of x grid points (n_x_grid)
real(kind=8),intent(in) :: y_arr(:) ! array of y grid points (n_y_grid)
real(kind=8),intent(in) :: z_arr(:) ! array of z grid points (n_z_grid)
real(kind=8),intent(in) :: f_arr(:,:,:,:) ! array of f(x,y,z) grid points (n_v,n_x_grid,n_y_grid,n_z_grid)
! result declaration
real(kind=8) :: f(size(f_arr,1)) ! array of interpolated f(x,y,z) values (n_v,n_point)
! variable declarations
integer :: i ! x axis index
integer :: j ! y axis index
integer :: k ! z axis index
real(kind=8) :: w_x ! x axis interpolation weight
real(kind=8) :: w_y ! y axis interpolation weight
real(kind=8) :: w_z ! z axis interpolation weight
! get index between 1 and n-1
i=1+floor((x-x_arr(1))*inv_dx)
i=min(max(i,1),size(x_arr)-1)
! set weight
w_x=(x-x_arr(i))*inv_dx
! get index between 1 and n-1
j=1+floor((y-y_arr(1))*inv_dy)
j=min(max(j,1),size(y_arr)-1)
! set weight
w_y=(y-y_arr(j))*inv_dy
! get index between 1 and n-1
k=1+floor((z-z_arr(1))*inv_dz)
k=min(max(k,1),size(z_arr)-1)
! get weight
w_z=(z-z_arr(k))*inv_dz
! perform interpolation
f=trilerp(w_x,w_y,w_z,&
&f_arr(:,i,j,k),f_arr(:,i,j,k+1),f_arr(:,i,j+1,k),f_arr(:,i,j+1,k+1),&
&f_arr(:,i+1,j,k),f_arr(:,i+1,j,k+1),f_arr(:,i+1,j+1,k),f_arr(:,i+1,j+1,k+1))
return
end function
! linear interpolation
elemental function lerp(w_x,f_0,f_1) result(f)
! argument declarations
real(kind=8),intent(in) :: w_x ! (x-x_0)/(x_1-x_0)
real(kind=8),intent(in) :: f_0 ! f(x) interpolation points
real(kind=8),intent(in) :: f_1
! result declaration
real(kind=8) :: f ! f(x)
! solve for f
f=f_0+(f_1-f_0)*w_x
return
end function
! bilinear interpolation
elemental function bilerp(w_x,w_y,f_00,f_01,f_10,f_11) result(f)
! argument declarations
real(kind=8),intent(in) :: w_x ! (x-x_0)/(x_1-x_0)
real(kind=8),intent(in) :: w_y ! (y-y_0)/(y_1-y_0)
real(kind=8),intent(in) :: f_00 ! f(x,y) values
real(kind=8),intent(in) :: f_01
real(kind=8),intent(in) :: f_10
real(kind=8),intent(in) :: f_11
! result declaration
real(kind=8) :: f ! f(x,y)
! solve for f
f=lerp(w_y,lerp(w_x,f_00,f_10),lerp(w_x,f_01,f_11))
return
end function
! trilinear interpolation
elemental function trilerp(w_x,w_y,w_z,&
&f_000,f_001,f_010,f_011,f_100,f_101,f_110,f_111) result(f)
! argument declarations
real(kind=8),intent(in) :: w_x ! (x-x_0)/(x_1-x_0)
real(kind=8),intent(in) :: w_y ! (y-y_0)/(y_1-y_0)
real(kind=8),intent(in) :: w_z ! (z-z_0)/(z_1-z_0)
real(kind=8),intent(in) :: f_000 ! f(x,y) values
real(kind=8),intent(in) :: f_001
real(kind=8),intent(in) :: f_010
real(kind=8),intent(in) :: f_011
real(kind=8),intent(in) :: f_100
real(kind=8),intent(in) :: f_101
real(kind=8),intent(in) :: f_110
real(kind=8),intent(in) :: f_111
! result declaration
real(kind=8) :: f ! f(x,y)
! solve for f
f=lerp(w_z,bilerp(w_x,w_y,f_000,f_010,f_100,f_110),&
&bilerp(w_x,w_y,f_001,f_011,f_101,f_111))
return
end function
end module