-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEM_analytical_wrapper.m
135 lines (104 loc) · 3.7 KB
/
EM_analytical_wrapper.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
% EM_analytical_wrapper.m
%
% Author: Olympia Axelou
% Affiliation: University of Thessaly
%
% Date: 22 Jul 2022
clc;clear;format longg;
addpath('dct')
fprintf('\n - - - EM Analytical - - - \n\n');
%% Script Initializations
% Set time
t = 6.38e8;
% Number of nodes
dx = 1e-6;
% Inputs
benchmark = '5-segment';
tree_file = strcat('benchmarks/', benchmark, '/tree_line.txt');
current_densities_file = strcat('benchmarks/', benchmark, '/tree_curden.txt');
% Physical parameters - Cu DD
D0=1.3e-9; % Diffusivity Constant (m^2/s)
Ea=1.609e-19; % Activation Energy
kB=1.3806e-23; % Boltzmann constant (J/K).
T = 378; % Temperature (K)
Da=D0*exp(-Ea/(kB*T)); % Diffusion coefficient
B0=28e9; % Bulk Modulus for the metal (Pa)
Omega=1.182e-29; % Atomic Volume foe the metal (m^3)
rho=2.25e-8; % Electrical Resistivity (Ohm m)
Z=1; % Effective Charge Number
kappa=(Da*B0*Omega)/(kB*T);
b = Ea*Z*rho/Omega;
% Flags
plots_flag = true;
plot_curden_flag = true;
plot_visibility = 'on';
%% Input Parsing
[lengths,cur_den] = read_inputs(tree_file, current_densities_file);
clear tree_file current_densities_file;
% Plot current densities
if plots_flag && plot_curden_flag
n_wires = numel(lengths); %number of wire segments in tree
x = zeros(size(cur_den,1),1);
for i = 2:size(cur_den,1)+1
x(i) = x(i-1) + lengths(i-1);
end
x1 = zeros(2*size(cur_den,1),1);
j = 2;
for i = 2:size(cur_den,1)+1
if j <= 2*size(cur_den,1)
if j > 2
x1(j-1) = x1(j-2);
end
x1(j) = x1(j-1) + lengths(i-1);
j = j + 2;
end
end
f1 = figure('visible', plot_visibility);
clf(f1);
hold on;
curden1 = repelem(cur_den, 2, 1);
for i = 1:size(curden1,1)/2
plot(x1(2*i-1:2*i),curden1(2*i-1:2*i), 'b-','LineWidth',3);
xline(x1(2*i),'--');
end
% plot(x1,repelem(J_list, 2, 1), 'b*--');
xlim([x(1) x(size(x,1))]);
line_str = "Current Density accross the line";
title_str = sprintf('%s',line_str);
title_curden_obj = title(title_str);
set(title_curden_obj,'Interpreter','none')
f1.Position(1) = 300;
f1.Position(2) = 250;
hold off;
clear x x1 curden1
end
%% Form analytical solution
[A_coeff,nx_total,B,u,nodes_per_segment, time_matrix_formulation] = matrix_formulation(dx,lengths,cur_den,kappa,b);
clear cur_den lengths;
fprintf('Starting analytical method formulation...\n');
[lambdas, right_side_matrix, time_formulation] = EM_analytical_formulation(nx_total,B,u);
clear B u;
%% Calculate sigmas at specific time
% This section here can be executed multiple times (for different time points)
% and in parallel without having to run again the EM_analytical_formulation script.
fprintf('Starting analytical method execution...\n');
[sigmas, time_execution] = EM_analytical_stress_calculation(lambdas,A_coeff,right_side_matrix,t);
fprintf('\nnx_total = %d\n', nx_total);
fprintf('#segments = %d\n', size(nodes_per_segment,1));
fprintf('\nAnalytical Formation Time: %.10f\n', time_matrix_formulation+time_formulation);
fprintf('Analytical Execution Time: %.10f\n', time_execution);
fprintf('Analytical Total Time: %.10f\n', time_matrix_formulation+time_formulation+time_execution);
%% Plot stress across the line
if plots_flag
f2 = figure('visible', plot_visibility);
x = dx * [0:nx_total-1]';
hold on;
plot(x,sigmas, 'b*-');
xlim([(dx*(nx_total-1))*0 (dx*(nx_total-1))]);
f2.Position(1) = 865;
f2.Position(2) = 250;
hold off;
title_str = sprintf('%s at %.1d sec',"5-segment line", t);
title_obj = title(title_str);
set(title_obj,'Interpreter','none')
end