-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathesm-lecture-3.tex
1745 lines (1248 loc) · 44.3 KB
/
esm-lecture-3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% NB: use pdflatex to compile NOT pdftex. Also make sure youngtab is
% there...
% converting eps graphics to pdf with ps2pdf generates way too much
% whitespace in the resulting pdf, so crop with pdfcrop
% cf. http://www.cora.nwra.com/~stockwel/rgspages/pdftips/pdftips.shtml
\documentclass[10pt,aspectratio=169,dvipsnames]{beamer}
\usetheme[color/block=transparent]{metropolis}
\usepackage[absolute,overlay]{textpos}
\usepackage{booktabs}
\usepackage[utf8]{inputenc}
\usepackage[scale=2]{ccicons}
\usepackage[official]{eurosym}
%use this to add space between rows
\newcommand{\ra}[1]{\renewcommand{\arraystretch}{#1}}
\setbeamerfont{alerted text}{series=\bfseries}
\setbeamercolor{alerted text}{fg=Mahogany}
\setbeamercolor{background canvas}{bg=white}
\newcommand{\R}{\mathbb{R}}
\def\l{\lambda}
\def\m{\mu}
\def\d{\partial}
\def\cL{\mathcal{L}}
\def\co2{CO${}_2$}
% for sources http://tex.stackexchange.com/questions/48473/best-way-to-give-sources-of-images-used-in-a-beamer-presentation
\setbeamercolor{framesource}{fg=gray}
\setbeamerfont{framesource}{size=\tiny}
\newcommand{\source}[1]{\begin{textblock*}{5cm}(10.5cm,8.35cm)
\begin{beamercolorbox}[ht=0.5cm,right]{framesource}
\usebeamerfont{framesource}\usebeamercolor[fg]{framesource} Source: {#1}
\end{beamercolorbox}
\end{textblock*}}
\usepackage{hyperref}
\usepackage{tikz}
\usetikzlibrary{arrows.meta}
\usepackage[europeanresistors,americaninductors]{circuitikz}
%\usepackage[pdftex]{graphicx}
\graphicspath{{graphics/}}
\DeclareGraphicsExtensions{.pdf,.jpeg,.png,.jpg}
\def\goat#1{{\scriptsize\color{green}{[#1]}}}
\let\olditem\item
\renewcommand{\item}{%
\olditem\vspace{5pt}}
\title{Energy System Modelling\\ Summer Semester 2020, Lecture 3}
%\subtitle{---}
\author{
{\bf Dr. Tom Brown}, \href{mailto:tom.brown@kit.edu}{tom.brown@kit.edu}, \url{https://nworbmot.org/}\\
\emph{Karlsruhe Institute of Technology (KIT), Institute for Automation and Applied Informatics (IAI)}
}
\date{}
\titlegraphic{
\vspace{0cm}
\hspace{10cm}
\includegraphics[trim=0 0cm 0 0cm,height=1.8cm,clip=true]{kit.png}
\vspace{5.1cm}
{\footnotesize
Unless otherwise stated, graphics and text are Copyright \copyright Tom Brown, 2020.
Graphics and text for which no other attribution are given are licensed under a
\href{https://creativecommons.org/licenses/by/4.0/}{Creative Commons
Attribution 4.0 International Licence}. \ccby}
}
\begin{document}
\maketitle
\begin{frame}
\frametitle{Table of Contents}
\setbeamertemplate{section in toc}[sections numbered]
\tableofcontents[hideallsubsections]
\end{frame}
\section{Single Location Versus Country Versus Continent}
\begin{frame}
\frametitle{Variability: Single wind site in Berlin}
Looking at the wind output of a single wind plant over two weeks, it is highly
variable, frequently dropping close to zero and fluctuating strongly.
\centering
\includegraphics[width=12cm]{variability-berlin}
\end{frame}
\begin{frame}
\frametitle{Variability: Single country: Germany}
For a whole country like Germany this results in valleys and peaks that are somewhat smoother, but the profile still frequently
drops close to zero.
\centering
\includegraphics[width=12cm]{variability-de}
\end{frame}
\begin{frame}
\frametitle{Variability: A continent: Europe}
If we can integrate the feed-in of wind turbines across the European continent, the
feed-in is considerably smoother: we've eliminated most valleys and
peaks.
\centering
\includegraphics[width=12cm]{variability-eu}
\end{frame}
\begin{frame}
\frametitle{Duration curve: Berlin}
A \alert{duration curve} shows the feed-in for the whole year, re-ordered by from highest to lowest value. For a single location there are many hours with no feed-in.
\centering
\includegraphics[width=12cm]{duration-berlin}
\end{frame}
\begin{frame}
\frametitle{Duration curve: Germany}
For a whole country there are fewer peaks and fewer hours with no feed-in.
\centering
\includegraphics[width=12cm]{duration-de}
\end{frame}
\begin{frame}
\frametitle{Duration curve: Europe}
For the whole of Europe there are no times with zero feed-in.
\centering
\includegraphics[width=12cm]{duration-eu}
\end{frame}
\begin{frame}
\frametitle{Statistical comparison}
\ra{1.1}
\begin{table}[!t]
\begin{tabular}{lrr}
\toprule
Area & Mean & Standard deviation\\
\midrule
Berlin & 0.21 & 0.26 \\
Germany & 0.26 & 0.24 \\
Europe (including offshore) & 0.36 & 0.19 \\
\bottomrule
\end{tabular}
\end{table}
\vspace{1cm}
\alert{Conclusion}: Wind generation has much lower variability if you integrate it over a continent-sized area.
\end{frame}
\begin{frame}
\frametitle{Fourier spectrum: weekly variations suppressed}
% from ~/energy/playground/pypsa-eur/notebooks/fourier_of_synoptic.ipynb
% (tom3) tom@darth:~/energy/playground/pypsa-eur/notebooks$ cp german_wind.pdf ../../../courses/ei2-2019/graphics-ei2/fourier_german_wind.pdf
% (tom3) tom@darth:~/energy/playground/pypsa-eur/notebooks$ cp europe_wind.pdf ../../../courses/ei2-2019/graphics-ei2/fourier_europe_wind.pdf
The \alert{synoptic} (2-3 weeks) variations in the Fourier spectrum are
also suppressed between Germany (left) and the Europe
profile (right), however the seasonal variations remain.
\vspace{.7cm}
\includegraphics[width=6.5cm]{fourier_german_wind.pdf}
\includegraphics[width=6.5cm]{fourier_europe_wind.pdf}
\end{frame}
\begin{frame}
\frametitle{Why does this work? Consider the correlation length of wind}
\begin{columns}[T]
\begin{column}{5.5cm}
\includegraphics[height=7.5cm]{simeon-correlation}
\end{column}
\begin{column}{7.5cm}
\vspace{0.2cm}
\begin{itemize}
\item The Pearson correlation coefficient of wind time series with a point in
northern Germany decays with distance.
\item Determine the \alert{correlation length} $L$ by fitting the
function:
\begin{equation*}
\rho \sim e^{-\frac{x}{L}}
\end{equation*}
to the radial decay with distance $x$.
\item Typically correlation lengths for wind are around $400-600$~km. Smoothing requires aggregating uncorrelated sources, so need a bigger area, i.e. a continent (Europe is about 3500~km tall and 3100~km wide).
\end{itemize}
\end{column}
\end{columns}
\source{\href{https://doi.org/10.1016/j.apenergy.2011.10.039}{Hagspiel et al, 2012}}
\end{frame}
\begin{frame}
\frametitle{Mismatch between load and renewables}
How does the mismatch change as we integrate over larger areas?
If we have for each time $t$ a demand of $d_t$ and a `per unit'
availability $w_t$ for wind and $s_t$ for solar, then if we have $W$
MW of wind and $S$ MW of solar, the effective \alert{residual load}
or \alert{mismatch} is
\begin{equation*}
m_t = d_t - Ww_t - Ss_t
\end{equation*}
We choose $W$ and $S$ such that on \alert{average} we cover all the load
\begin{equation*}
\langle m_t \rangle = 0
\end{equation*}
and so that the 70\% of the energy comes from wind and 30\% from solar ($W = 147$ GW and $S = 135$ GW for Germany).
This means
\begin{equation*}
W\langle w_t \rangle = 0.7\langle d_t \rangle \hspace{2cm} S\langle s_t \rangle = 0.3\langle d_t \rangle
\end{equation*}
\end{frame}
\begin{frame}
\frametitle{Mismatch between load and renewables}
Let $p_t$ be the balance of power at each time. Because we cannot
create or destroy energy, we need $p_t = 0$ at all times.
If the mismatch is positive $m_t > 0$, then we need \alert{backup power} $b_t = m_t$
to cover the load in the absence of renewables, so that
\begin{equation*}
p_t = b_t - m_t = b_t - d_t + Ww_t + Ss_t = 0
\end{equation*}
If the mismatch is negative $m_t < 0$ then we need \alert{curtailment} $c_t = -m_t$
to reduce the excess feed-in from renewables, so that
\begin{equation*}
p_t = - m_t - c_t = -c_t - d_t + Ww_t + Ss_t = 0
\end{equation*}
At any one time we have either backup or curtailment
\begin{equation*}
p_t = b_t - m_t - c_t = Ww_t + Ss_t + b_t - d_t - c_t = 0
\end{equation*}
\end{frame}
\begin{frame}
\frametitle{Mismatch for Germany}
Backup generation needed for 31\% of the total load.
Peak mismatch is 91\% of peak load (around 80~GW).
\centering
\includegraphics[width=12cm]{mismatch-duration-DE}
\end{frame}
\begin{frame}
\frametitle{Mismatch for Europe}
Requires 750~GW each of onshore wind and solar.
Backup generation needed for only 24\% of the total load.
Peak mismatch is 79\% of peak load (around 500~GW).
\centering
\includegraphics[width=12cm]{mismatch-duration-EU}
\end{frame}
\begin{frame}
\frametitle{Conclusions}
\begin{itemize}
\item Integration over a larger area smooths out the fluctuations of
renewables, particularly wind.
\item Wind backs up wind.
\item This means we need \alert{less backup energy}.
\item And \alert{less backup capacity}.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Greiner papers}
\href{http://www.sciencedirect.com/science/article/pii/S0360544215002212}
{`Cost-optimal design of a simplified, highly renewable pan-European
electricity system'} by
Rolando A. Rodriguez, Sarah Becker, Martin Greiner,
Energy 83 (2015) 658-668
\centering
\includegraphics[width=6.5cm]{backup_energy}
\includegraphics[width=6.5cm]{backup_capacity}
\end{frame}
\begin{frame}
\frametitle{Flexibility Requirements}
\href{http://www.sciencedirect.com/science/article/pii/S0360544214002680}{`Integration of wind and solar power in Europe: Assessment of flexibility requirements'} by Huber, Dimkova, Hamacher,
Energy 69 (2014) 236e246
1-hour net load ramp duration curves at the regional, country and European
spatial scales at 50\% share of renewables and 20\% PV in the wind/PV mix for the
meteorological year 2009.
\centering
\includegraphics[width=7cm]{huber-hamacher}
\end{frame}
\begin{frame}
\frametitle{Big Caveat}
There is a big caveat to this analysis.
We've assumed that we can move power around Europe without penalty.
However, in reality, we can only transport within restrictions of the power network.
In general we will have different power imbalances $p_{i,t}$ at each
location/node $i$ and instead of $p_t = 0$ we will have
\begin{equation*}
\sum_i p_{i,t} = 0
\end{equation*}
(neglecting power losses in the network).
Moving excess power to locations of consumption is the role of the network.
\end{frame}
\section{Electricity Networks}
\begin{frame}
\frametitle{Electricity Transport from Generators to Consumers}
%https://upload.wikimedia.org/wikipedia/commons/thumb/4/41/Electricity_grid_simple-_North_America.svg/640px-Electricity_grid_simple-_North_America.svg.png
Electricity can be transported over long distances with low losses using the
high voltage transmission grid (losses go like $I^2R$, power transmission like $VI$, so reduce $I$ by raising $V$):
\centering
\includegraphics[width=14cm]{Electricity_grid_simple-_North_America}
\raggedright
Usually in houses the voltage is $230~V$, but in the transmission
grid it is transformed up to hundreds of thousands of Volts.
\source{Wikipedia}
\end{frame}
\begin{frame}[fragile]
\frametitle{European transmission network}
Flows in the European transmission network must respect both
Kirchoff's laws for physical flow and the thermal and/or other limits of the power lines.
Taking account of network flows and constraints in the electricity market is a major and exciting topic at the moment.
\centering
\includegraphics[width=8cm]{europe-transmission}
\source{ENTSO-E}
\end{frame}
\begin{frame}
\frametitle{Network Bottlenecks and Loop Flows}
Electricity is traded in large market zones. Power trades between
zones (``scheduled flows'') do not always correspond to what flows
according to the network physics (``physical flows''). This
leads to political tension as wind from Northern Germany flows to Southern Germany via Poland and the Czech Republic.
\centering
\includegraphics[width=9cm]{germany_loop_flows}
\source{THEMA Consulting Group}
%https://ec.europa.eu/energy/sites/ener/files/documents/201310_loop-flows_study.pdf
\end{frame}
\begin{frame}
\frametitle{Solar resource distribution in Germany}
\begin{columns}[T]
\begin{column}{5.5cm}
\includegraphics[trim=0 0cm 0 0cm,width=5.5cm,clip=true]{SolarGIS-Solar-map-Germany-de}
\end{column}
\begin{column}{4.5cm}
\begin{itemize}
\item Solar insolution at top of atmosphere is on average 1361~W/m${}^2$
(orbit is elliptical).
\item In Germany average insolation on a horizonal surface is
around 1200~kWh/m${}^2$.
\item A 1~kW solar panel (around 7~m${}^2$) will generate around 1000~kWh/a.
% 1000~kWh/a/kW_p; 0.150 kW_p/m^2 means 150~kWh/a/m^2, efficiency of 0.125
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Wind resource distribution in Germany}
\begin{columns}[T]
\begin{column}{8.5cm}
\includegraphics[trim=0 0cm 0 0cm,width=8.5cm,clip=true]{43_Mittlere_Windgeschwindigkeit_100_m_Deutschland}
\end{column}
\begin{column}{3.5cm}
\begin{itemize}
\item Best wind speeds in Germany in North and on hills.
\item In theory power output goes like cube $\propto v^3$ of wind
speed $v$.
\item In practice power-speed relationship is only partially
cubic.
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{The Problem}
Renewables are not always located near demand centres, as in this example from Germany.
\begin{columns}[T]
\begin{column}{6cm}
\includegraphics[width=6cm]{scigrid-load}
\end{column}
\begin{column}{6cm}
% left bottom right top
\includegraphics[trim=0 0cm 0 1cm,width=6.3cm,clip=true]{scigrid-wind}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{The Problem}
\begin{columns}[T]
\begin{column}{5cm}
\includegraphics[width=6cm]{scigrid-loading}
\end{column}
\begin{column}{6cm}
\begin{itemize}
\item This leads to \alert{overloaded lines} in the middle of Germany, which
cannot transport all the wind energy from North Germany to the load
in South Germany
\item It also overloads lines in neighbouring countries due to
\alert{loop flows} (unplanned physical flows `according to least
resistance' which do not correspond to traded flows)
\item It also \alert{blocks imports and exports} with
neighbouring countries, e.g. Denmark
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Different types of networks: radial networks}
In a \alert{radial} or \alert{tree-like} network there is only one path between any two nodes on the network.
The power flow is thus completely determined by the nodal power imbalances.
\centering
\includegraphics[width=7cm]{radial}
\source{Biggar \& Hesamzadeh}
\end{frame}
\begin{frame}{Different types of networks: meshed networks}
In a \alert{meshed} network there are at least two nodes with multiple paths between them.
The power flow is now not completely determined. We need new information: the impedances in the network.
\centering
\includegraphics[width=7cm]{meshed}
\source{Biggar \& Hesamzadeh}
\end{frame}
\section{Graph Theory}
\begin{frame}
\frametitle{Definition of a network}
Our definition (Newman): A \alert{network} (graph) is a collection of \alert{vertices} (nodes) joined by \alert{edges} (links).\\
\vspace{0.5in}
More precise definition (Bollob\`as): An undirected graph $G$ is an ordered pair of disjoint sets $(V,E)$ such that $E$ (the edges) is a subset of the set $V^{(2)}$ of unordered pairs of $V$ (the vertices).
\end{frame}
\begin{frame}
\frametitle{Edge list representation}
\begin{columns}
\column[c]{.40\textwidth}
% \alert{Edge list} representation:
\begin{itemize}
\item Vertices:\\
1,2,3,4,5,6\\
\item Edges:\\
(1,2), (1,3), (1,6), (2,3), (3,4), (4,5), (4,6)
\end{itemize}
Definition from graph theory:
\begin{itemize}
\item $N=6$ vertices: \alert{order} of the graph\\
\item $L=7$ edges: \alert{size} of the graph
\end{itemize}
\column[c]{.60\textwidth}
\includegraphics[scale=0.15]{graph1a.png}
\end{columns}
\end{frame}
%-----%-----%-----%-----%-----%-----%-----%-----%
\begin{frame}
\frametitle{Adjacency matrix $\mathbf{A}$}
\begin{equation*}
A_{ij} = \begin{cases} 1 &\mbox{if there is an edge between vertices i and j} \\
0 & \mbox{otherwise}. \end{cases}
\end{equation*}
\begin{columns}
\column[c]{.6\textwidth}
\begin{equation*}
\mathbf{A}=\left(\begin{matrix}
0 & 1 & 1 & 0 & 0 & 1\\
1 & 0 & 1 & 0 & 0 & 0\\
1 & 1 & 0 & 1 & 0 & 0\\
0 & 0 & 1 & 0 & 1 & 1\\
0 & 0 & 0 & 1 & 0 & 0\\
1 & 0 & 0 & 1 & 0 & 0
\end{matrix}\right)
\end{equation*}
\begin{itemize}
\item Diagonal elements are zero.
\item Symmetric matrix for an undirected graph.
\item If there are $N$ vertices, it's an $N\times N$ matrix.
\end{itemize}
\column[c]{.4\textwidth}
\includegraphics[scale=0.12]{graph1a.png}
\end{columns}
\end{frame}
%-----%-----%-----%-----%-----%-----%-----%-----%
\begin{frame}
\frametitle{Multigraph}
There can be more than one edge between a pair of vertices.
\begin{columns}
\column[c]{.40\textwidth}
\begin{equation*}
\mathbf{A}=\left(\begin{matrix}
0 & 1 & 1 & 0 & 0 & 3\\
1 & 0 & 2 & 0 & 0 & 0\\
1 & 2 & 0 & 1 & 0 & 0\\
0 & 0 & 1 & 0 & 1 & 1\\
0 & 0 & 0 & 1 & 0 & 0\\
3 & 0 & 0 & 1 & 0 & 0
\end{matrix}\right)
\end{equation*}
\column[c]{.60\textwidth}
\includegraphics[scale=0.15]{graph2a.png}
\end{columns}
\end{frame}
%-----%-----%-----%-----%-----%-----%-----%-----%
\begin{frame}
\frametitle{Self-edges}
There can be \alert{self-edges} (also called self-loops).
\begin{columns}
\column[c]{.40\textwidth}
\begin{equation*}
\mathbf{A}=\left(\begin{matrix}
0 & 1 & 1 & 0 & 0 & 3\\
1 & 0 & 1 & 0 & 0 & 0\\
1 & 1 & 2 & 1 & 0 & 0\\
0 & 0 & 1 & 2 & 1 & 1\\
0 & 0 & 0 & 1 & 0 & 0\\
3 & 0 & 0 & 1 & 0 & 0
\end{matrix}\right)
\end{equation*}
\begin{itemize}
\item Diagonal elements can be non-zero:\\
Definition: $A_{ii}=2$ for one self-edge.
\end{itemize}
\column[c]{.60\textwidth}
\includegraphics[scale=0.15]{graph3a.png}
\end{columns}
\end{frame}
%-----%-----%-----%-----%-----%-----%-----%-----%
\begin{frame}
\frametitle{Weighted networks}
We can assign a \alert{weight} or \alert{strength} assigned to each edge.
\begin{columns}
\column[c]{.55\textwidth}
\begin{equation*}
\mathbf{A}=\left(\begin{matrix}
0 & 1.4 & 0.4 & 0 & 0 & 0.8\\
1.4 & 0 & 1.2 & 0 & 0 & 0\\
0.4 & 1.2 & 0 & 0.2 & 0 & 0\\
0 & 0 & 0.2 & 0 & 0.2 & 0\\
0 & 0 & 0 & 0.2 & 0 & 0\\
0.8 & 0 & 0 & 0.4 & 0 & 0
\end{matrix}\right)
\end{equation*}
\column[c]{.45\textwidth}
\includegraphics[scale=0.13]{graph4a.png}
\end{columns}
Weights can be both positive or negative.
\end{frame}
%-----%-----%-----%-----%-----%-----%-----%-----%
%-----%-----%-----%-----%-----%-----%-----%-----%
\begin{frame}
\frametitle{Components of networks}
\begin{columns}
\column[c]{.6\textwidth}
\begin{itemize}
\item Subgroups of vertices with no connections between the respective groups
\item \alert{Disconnected} network
\item Subgroups: \alert{components}
\item Adjacency matrix: Block-diagonal form
\end{itemize}
\column[c]{.4\textwidth}
\includegraphics[scale=0.12]{graph22.png}\end{columns}
\end{frame}
%-----%-----%-----%-----%-----%-----%-----%-----%
\begin{frame}
\frametitle{Directed Networks (Digraphs)}
A graph is \alert{directed} if each edge is pointing from one vertex to another (\alert{directed edge}).
\begin{equation*}
A_{ij} = \begin{cases} 1 &\mbox{if there is an edge from $j$ to $i$} \\
0 & \mbox{otherwise}. \end{cases}
\end{equation*}
\begin{columns}
\column[c]{.55\textwidth}
\begin{equation*}
\mathbf{A}=\left(\begin{matrix}
0 & 0 & 0 & 0 & 0 & 0\\
1 & 0 & 0 & 0 & 0 & 0\\
1 & 1 & 0 & 0 & 0 & 0\\
0 & 0 & 1 & 0 & 0 & 0\\
0 & 0 & 0 & 1 & 0 & 0\\
1 & 0 & 0 & 1 & 0 & 0
\end{matrix}\right)
\end{equation*}
\column[c]{.45\textwidth}
\includegraphics[scale=0.11]{graph6a.png}
\end{columns}
In general the adjacency matrix of a directed network is asymmetric.
\end{frame}
%-----%-----%-----%-----%-----%-----%-----%-----%
\begin{frame}
\frametitle{Degree}
\begin{itemize}
\item The \alert{degree} $k_{i}$ of a vertex $i$ is defined as the number of edges connected to $i$.
\item Average degree of the network: $\langle k \rangle$.
\end{itemize}
\vspace{0.25cm}
In terms of the adjacency matrix $\mathbf{A}$:
\begin{equation*}
k_{i} = \sum_{j=1}^{n}A_{ij}\quad , \quad
\langle k\rangle = \frac{1}{n}\sum_{i}k_{i} = \frac{1}{n}\sum_{i=1}^{n}\sum_{j=1}^{n}A_{ij}~.
\end{equation*}
\begin{columns}
\column[c]{.55\textwidth}
\begin{flalign*}
k_{5}& = 1\\
k_{2}& = k_{6} = 2\\
k_{1}& = k_{3} = k_{4} =3\\
\langle k \rangle& = 2.33
\end{flalign*}
\column[c]{.45\textwidth}
\includegraphics[scale=0.10]{graph1a.png}
\end{columns}
\end{frame}
%-----%-----%-----%-----%-----%-----%-----%-----%
\begin{frame}
\frametitle{Examples}
\includegraphics[width=14cm]{netscibook.png}
(from the free textbook "Network Science")
\end{frame}
%
\begin{frame}
\frametitle{Degree matrix $\mathbf{D}$}
\begin{equation*}
D_{ij} = \begin{cases}k_i &\mbox{if } i=j\\
0 & \mbox{otherwise}. \end{cases}
\end{equation*}
\begin{columns}
\column[c]{.40\textwidth}
It's an $N \times N$ matrix again:
\begin{equation*}
\mathbf{D}=\left(\begin{matrix}
3 & 0 & 0 & 0 & 0 & 0\\
0 & 2 & 0 & 0 & 0 & 0\\
0 & 0 & 3 & 0 & 0 & 0\\
0 & 0 & 0 & 3 & 0 & 0\\
0 & 0 & 0 & 0 & 1 & 0\\
0 & 0 & 0 & 0 & 0 & 2
\end{matrix}\right)
\end{equation*}
\column[c]{.60\textwidth}
\includegraphics[scale=0.15]{graph1a.png}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Laplacian L}
The \alert{Laplacian matrix} is an $N \times N$ matrix defined for an undirected graph by
\begin{equation*}
\mathbf{L} = \mathbf{D} - \mathbf{A}
\end{equation*}
\vspace{-0.3cm}
\begin{columns}
\column[c]{.60\textwidth}
\begin{equation*}
\mathbf{L}=\left(\begin{matrix}
3 & -1 & -1 & 0 & 0 & -1\\
-1 & 2 & -1 & 0 & 0 & 0\\
-1 & -1 & 3 & -1 & 0 & 0\\
0 & 0 & -1 & 3 & -1 & -1\\
0 & 0 & 0 & -1 & 1 & 0\\
-1 & 0 & 0 & -1 & 0 & 2
\end{matrix}\right)
\end{equation*}
\vspace{-0.3cm}
\begin{itemize}
\item $\mathbf{L}$ inherits symmetry from $\mathbf{D}$ and $\mathbf{A}$ for the undirected graph.
\item The columns (and rows) sum to zero.
\item For a set of connected nodes $I$, $\sum_{i\in I} L_{ij} = 0$ $\forall j$.
\end{itemize}
\column[c]{.40\textwidth}
\includegraphics[scale=0.13]{graph1a.png}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Eigenvalues and eigenvectors of Laplacian L}
The number of eigenvectors with zero eigenvalues equals the number of connected components.
For our connected graph, the single zero eigenvector is $(1,1,\dots 1)$:
\begin{equation*}
\mathbf{L} \left(\begin{matrix}
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{matrix}\right)=\left(\begin{matrix}
3 & -1 & -1 & 0 & 0 & -1\\
-1 & 2 & -1 & 0 & 0 & 0\\
-1 & -1 & 3 & -1 & 0 & 0\\
0 & 0 & -1 & 3 & -1 & -1\\
0 & 0 & 0 & -1 & 1 & 0\\
-1 & 0 & 0 & -1 & 0 & 2
\end{matrix}\right) \left(\begin{matrix}
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{matrix}\right)= \left(\begin{matrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{matrix}\right)
\end{equation*}
Multiplying this eigenvector sums the rows, which gives zero.
The image of the matrix is made of differences across the nodes, so is $N-1$ dimensional.
\end{frame}
\begin{frame}
\frametitle{Eigenvalues and eigenvectors of Laplacian L}
For a graph with two connected components, the Laplacian becomes block diagonal for the components, since there are no edges linking the components in the adjacency matrix:
\vspace{.5cm}
\begin{columns}
\column[c]{.5\textwidth}
\begin{equation*}
\mathbf{L}=\left(\begin{matrix}
2 & -1 & -1 & & & \\
-1 & 2 & -1 & & & \\
-1 & -1 & 2 & & & \\
& & &2 & -1 & -1\\
& & &-1 & 2 & -1\\
& & &-1 & -1 & 2 \\
\end{matrix}\right)
\end{equation*}
\column[c]{.5\textwidth}
\begin{tikzpicture}
\begin{scope}[every node/.style={circle,thick,draw,fill=cyan}]%text=white}]
\node (1) at (0,2) {1};
\node (2) at (2,2) {2};
\node (3) at (1,0) {3};
\node (4) at (3,1) {4};
\node (5) at (2,-1) {5};
\node (6) at (4,-1) {6};
\end{scope}
\begin{scope}[>={Stealth[black]},
every node/.style={fill=white,circle},
every edge/.style={draw=black,very thick}]
\path (1) edge (2);
\path (2) edge (3);
\path (3) edge (1);
\path (4) edge (5);
\path (5) edge (6);
\path (6) edge (4);
\end{scope}
\end{tikzpicture}
\end{columns}
\vspace{.5cm}
Verify that the two zero eigenvectors are $(1,1,1,0,0,0)$ and $(0,0,0,1,1,1)$ corresponding to the connected components.
\end{frame}
\begin{frame}
\frametitle{The incidence matrix}
For a directed graph (every edge has an orientation) $G=(V,E)$ with
$N$ nodes and $L$ edges, the node-edge \alert{incidence matrix}
$K\in\R^{N\times L}$ has components
\begin{align*}