forked from NVIDIA/NVFlare
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_rdlv_vs_gauss.py
89 lines (73 loc) · 3.17 KB
/
plot_rdlv_vs_gauss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import glob
import json
import os
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--workspaces",
type=str,
default="./workspaces",
help="Workdir containing rdvl_*.npy files.",
)
args = parser.parse_args()
rdvl_files = glob.glob(os.path.join(args.workspaces, "**", "rdvl_*.npy"), recursive=True)
assert len(rdvl_files) > 0, f"No RDVL files found in {args.workspace}"
results = {"RDVL": [], "Site": [], "Round": [], "sigma0": [], "test_accuracy": []}
for rdvl_file in rdvl_files:
_result = np.load(rdvl_file, allow_pickle=True).item()
img_recon_sim_reduced = _result["img_recon_sim_reduced"]
# read sigma0 from client config
client_config_file = os.path.join(os.path.dirname(rdvl_file), "config", "config_fed_client.json")
with open(client_config_file, "r") as f:
client_config = json.load(f)
gaussian_filter = client_config["task_result_filters"][0]["filters"][0]
assert (
"GaussianPrivacy" in gaussian_filter["path"]
), f"Expected filter to GaussianPrivacy but got {gaussian_filter['path']}"
sigma0 = gaussian_filter["args"]["sigma0"]
# read best global model accuracy from cross-site validation
cross_val_file = os.path.join(
os.path.dirname(os.path.dirname(rdvl_file)), "cross_site_val", "cross_val_results.json"
)
with open(cross_val_file, "r") as f:
cross_val = json.load(f)
best_model_perfrom = cross_val["site-1"]["SRV_best_FL_global_model.pt"]
for rdvl in img_recon_sim_reduced:
results["RDVL"].append(float(rdvl))
results["Site"].append(_result["site"])
results["Round"].append(_result["round"])
results["sigma0"].append(float(sigma0))
results["test_accuracy"].append(best_model_perfrom["test_accuracy"])
# plot RDVL
sns.lineplot(x="sigma0", y="RDVL", hue="Site", data=results)
plt.grid(True)
plt.xlabel("Gaussian Privacy ($\sigma_0$)")
plt.plot([np.min(results["sigma0"]), np.max(results["sigma0"])], [0, 0], "k", linewidth=1.0)
# plot accuracy
ax2 = plt.twinx()
sns.lineplot(x="sigma0", y="test_accuracy", data=results, color="tab:gray", ax=ax2)
ax2.lines[0].set_linestyle("--")
plt.grid(False)
plt.ylim([0.0, 1.0])
plt.ylabel("Testing Accuracy")
plt.legend(["Testing Accuracy"], loc="lower left")
plt.show()
if __name__ == "__main__":
main()