-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathserver.py
633 lines (551 loc) · 25.7 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
"""
Copyright (C) 2021 NVIDIA Corporation. All rights reserved.
Licensed under the NVIDIA Source Code License. See LICENSE at the main github page.
Authors: Seung Wook Kim, Jonah Philion, Antonio Torralba, Sanja Fidler
"""
from tornado import web, ioloop
import base64
from io import BytesIO
import json
import os
import sys
import torch
import cv2
import torchvision
import random
import time
from torchvision.utils import save_image
from torch.nn.modules.upsampling import Upsample
sys.path.append('..')
import torch.nn.functional as F
import config
import utils
from trainer import Trainer
from visual_utils import rescale
sys.path.insert(0, './data')
import numpy as np
opts, trainer, gpu, latent_decoder = utils.init_config_model_for_play()
staterecords = {}
fnames = [opts.initial_screen]
########## configure web
class NoCacheStaticFileHandler(web.StaticFileHandler):
def set_extra_headers(self, path):
self.set_header('Cache-Control',
'no-store, no-cache, must-revalidate, max-age=0')
class MainHandler(web.RequestHandler):
def get(self):
self.render("./frontend/demo.html")
def post(self):
global next_id
cmd = json.loads(self.request.body.decode('utf8').replace("'", '"'))
print('received', cmd)
if cmd['web_id'] == 'nothing_yet':
print('making a new portal!', next_id)
staterecords[next_id] = StateRecord()
cmd['web_id'] = next_id
next_id = (next_id + 1) % 5
if cmd['cmd'] == 'save_frame':
staterecords[cmd['web_id']].save_vectors(cmd['filename'])
elif cmd['cmd'] == 'save_state_vec':
staterecords[cmd['web_id']].save_state(cmd['filename'])
elif cmd['cmd'] == 'load_npy':
theme_names, part_names = staterecords[cmd['web_id']].load_npy(cmd['filename'])
self.write(json.dumps({'web_id': cmd['web_id'], 'theme_names': theme_names, 'part_names': part_names}))
elif cmd['cmd'] == 'change_from_list':
new_screen = staterecords[cmd['web_id']].change_from_list(cmd['kind'], cmd['name'])
if type(new_screen) == list:
new_screen = new_screen[-1]
self.write(json.dumps({'new_screen': pil_to_b64(new_screen).decode('utf8').replace("'", '"'), 'web_id': cmd['web_id']}))
elif cmd['cmd'] == 'load_screen':
img = staterecords[cmd['web_id']].load_screen(cmd['filename'])
self.write(json.dumps({'web_id': cmd['web_id'], 'img': pil_to_b64(img).decode('utf8').replace("'", '"')}))
elif cmd['cmd'] == 'resume':
staterecords[cmd['web_id']].is_stopped = False
staterecords[cmd['web_id']].screen_being_edited = None
staterecords[cmd['web_id']].cur_selected_part = None
elif cmd['cmd'] == 'start_recording':
if staterecords[cmd['web_id']].do_recording:
staterecords[cmd['web_id']].do_recording = False
staterecords[cmd['web_id']].save_seq = [{}]
else:
staterecords[cmd['web_id']].do_recording = True
staterecords[cmd['web_id']].recording_name = cmd['filename']
self.write(json.dumps({'web_id': cmd['web_id']}))
elif cmd['cmd'] == 'stop_recording' or (cmd['cmd'] == 'change_grid' and staterecords[cmd['web_id']].is_stopped):
staterecords[cmd['web_id']].is_stopped = True
if cmd['cmd'] == 'stop_recording':
# 'STOP' action
stop_action = []
if 'carla' in opts.data:
stop_action = [-5, 0]
elif 'gibson' in opts.data:
stop_action = [0, 0]
elif 'pilotnet' in opts.data:
stop_action = [-3, 0]
else:
print('\n\nNot implemented\n\n')
exit(-1)
self.write(json.dumps({'web_id': cmd['web_id'], 'stop_speed': stop_action[0], 'stop_yaw': stop_action[1]}))
staterecords[cmd['web_id']].stop_recording()
if cmd['cmd'] == 'change_grid':
imgs = staterecords[cmd['web_id']].change_grid(cmd['x'], cmd['y'])
imgs = [pil_to_b64(img).decode('utf8').replace("'", '"') for img in imgs]
self.write(json.dumps({'web_id': cmd['web_id'], 'imgs': imgs}))
elif cmd['cmd'] in ['reset', 'next_frame']:
if 'key' in cmd:
staterecords[cmd['web_id']].update_action(cmd['key'])
if cmd['cmd'] == 'reset':
print(staterecords.keys())
if len(fnames) == 0:
selected = None
else:
selected = fnames[random.randint(0, len(fnames) - 1)]
print('File name: ' + selected)
imgs = staterecords[cmd['web_id']].reset(selected)
result = {'web_id': cmd['web_id']}
if cmd['cmd'] == 'next_frame':
imgs, gt_info = staterecords[cmd['web_id']].stepper()
if gt_info is not None:
result['gt_img'] = pil_to_b64(gt_info['gt_img']).decode('utf8').replace("'", '"')
result['gt_speed'] = gt_info['gt_action'][0]
result['gt_yaw'] = gt_info['gt_action'][1]
result['optimized_speed'] = gt_info['optimized_action'][0]
result['optimized_yaw'] = gt_info['optimized_action'][1]
imgs = [pil_to_b64(img).decode('utf8').replace("'", '"') for img in imgs]
result['imgs'] = imgs
self.write(json.dumps(result))
elif cmd['cmd'] == 'change_hscene':
new_screen = staterecords[cmd['web_id']].reset_z_theme()
self.write(json.dumps({'new_screen': pil_to_b64(new_screen).decode('utf8').replace("'", '"'), 'web_id': cmd['web_id']}))
elif cmd['cmd'] == 'change_scene':
new_screen = staterecords[cmd['web_id']].reset_z_aindep()
self.write(json.dumps({'new_screen': pil_to_b64(new_screen).decode('utf8').replace("'", '"'), 'web_id': cmd['web_id']}))
elif cmd['cmd'] == 'change_content':
new_screen = staterecords[cmd['web_id']].reset_z_adep()
self.write(json.dumps({'new_screen': pil_to_b64(new_screen).decode('utf8').replace("'", '"'), 'web_id': cmd['web_id']}))
elif cmd['cmd'] == 'stop_recording':
staterecords[cmd['web_id']].stop_recording()
self.write(json.dumps({'web_id': cmd['web_id']}))
elif not staterecords[cmd['web_id']].is_stopped:
if staterecords[cmd['web_id']].dir_imgs is not None:
result = {'web_id': cmd['web_id']}
img, action = staterecords[cmd['web_id']].play_from_directory()
result['dir_img'] = pil_to_b64(img).decode('utf8').replace("'", '"')
result['speed'] = str(action[0])
result['yaw'] = str(action[1])
if 'pilotnet' in opts.data:
kind = 'pilotnet'
elif 'gibson' in opts.data:
kind = 'gibson'
elif 'carla' in opts.data:
kind = 'carla'
result['kind'] = kind
self.write(json.dumps(result))
else:
if staterecords[cmd['web_id']].prev_screen is not None:
staterecords[cmd['web_id']].update_action(cmd['cmd'])
imgs, gt_info = staterecords[cmd['web_id']].stepper()
result = {'web_id': cmd['web_id']}
if gt_info is not None:
result['gt_img'] = pil_to_b64(gt_info['gt_img'].decode('utf8').replace("'", '"'))
result['gt_speed'] = str(gt_info['gt_action'][0])
result['gt_yaw'] = str(gt_info['gt_action'][1])
if 'optimized_action' in gt_info:
result['optimized_speed'] = str(gt_info['optimized_action'][0])
result['optimized_yaw'] = str(gt_info['optimized_action'][1])
imgs = [pil_to_b64(img).decode('utf8').replace("'", '"') for img in imgs]
result['imgs'] = imgs
self.write(json.dumps(result))
def serve():
port = opts.port
loop = ioloop.IOLoop.instance()
app = web.Application([
(r"/", MainHandler),
(r"/(.*)", NoCacheStaticFileHandler, {
"path":
os.path.join(os.path.dirname(__file__), "./frontend/")})
], debug=True)
print('view @ http://localhost:{}'.format(port))
app.listen(port)
loop.start()
def pil_to_b64(img):
buffer = BytesIO()
img.save(buffer, 'JPEG')
return base64.b64encode(buffer.getvalue())
class StateRecord(object):
def __init__(self):
if opts.img_size[0] < 256:
self.upsample = Upsample(scale_factor=4, mode='nearest')
else:
self.upsample = Upsample(scale_factor=2, mode='nearest')
self.opts = opts
self.trainer = trainer
self.trainer.netG.eval()
self.is_stopped = False
self.do_recording= False
self.h = None
self.c = None
self.prev_z = None
self.update_action('stop')
self.time_step = 0
self.warm_up = 0
self.step = 0
self.resetStyle = False
self.reset_counter = 0
self.force_style = None
self.force_init_state = None
self.force_theme = None
self.cur_theme = None
self.screen_being_edited = None
self.cur_content = None
self.part_vector = None
self.recording_name = ''
self.selected_themes = []
self.selected_parts = []
self.themes = None
self.parts = None
self.cur_selected_part = None
self.optimized_seq = None
self.gt_seq = None
self.save_seq = [{}]
self.prev_screen = None
self.optimized_logvars = None
self.optimized_logvars_style = None
self.optimized_logvars_theme = None
self.freeAction = 1
self.firstImage = None
self.dir_imgs = None
def reset_save_arrays(self):
self.latent_save = []
self.style_save = []
self.content_save = []
self.theme_save = []
self.keep_screens = []
self.keep_actions = []
self.reset_counter = 0
def reset_lstm(self, states, actions, force_state_len=False, no_reset=False):
with torch.no_grad():
self.step = 0
self.reset_save_arrays()
d = self.trainer.netG.run_warmup(
states, actions, len(states) if force_state_len else self.warm_up,
force_style=self.force_style, force_init_state=self.force_init_state)
warm_up_state = d['warm_up_state']
self.step = len(states) if force_state_len else self.warm_up
self.time_step = len(states) if force_state_len else self.warm_up
self.trainer.netG.num_residual_kl_loss_added = 0
self.style_h = d['style_h']
self.prev_rnn_state = warm_up_state
self.prev_screen = d['prev_z']
if self.opts.initial_screen == 'rand' and not force_state_len and not no_reset:
self.reset_z_theme(init=True)
self.reset_z_aindep(init=True)
self.reset_z_adep()
d['prev_z'] = self.force_init_state
self.prev_screen = d['prev_z']
else:
self.force_theme = None
self.force_style = None
self.force_init_state = None
prev_z = utils.run_latent_decoder(latent_decoder, d['prev_z'], opts=opts)
prev_z = torch.clamp(prev_z, -1.0, 1.0)
img = rescale(prev_z)
self.keep_screens = [states[self.warm_up - 1]]
self.keep_actions = [actions[self.warm_up - 1]]
return img
def change_grid(self, x, y):
edit_screen = self.screen_being_edited
if self.screen_being_edited is None:
edit_screen = self.prev_screen
content = edit_screen[:, :-trainer.netG.theme_d]
theme = edit_screen[:, -trainer.netG.theme_d:]
mask = torch.zeros([content.size(0), 1, self.opts.spatial_h, self.opts.spatial_w])
content_reshape = content.view(content.size(0), -1, self.opts.spatial_h, self.opts.spatial_w)
new_content = torch.randn_like(content_reshape)
if self.cur_selected_part is not None:
for s_ind in range(len(x)):
new_content[0, :, int(y[s_ind]), int(x[s_ind])] = self.cur_selected_part
mask[:, :, int(y[s_ind]), int(x[s_ind])] = 1.0
else:
sx = int(x * self.opts.spatial_w)
sy = int(y * self.opts.spatial_h)
mask[:, :, sy, sx] = 1.0
self.part_vector = new_content[:, :, sy, sx].cpu().numpy()
mask = mask.to(content.device)
new_content = new_content * mask + content_reshape * (1 - mask)
new_content = new_content.view(content.size(0), -1)
self.force_init_state = torch.cat([new_content, theme], dim=1)
self.screen_being_edited = self.force_init_state
prev_z = utils.run_latent_decoder(latent_decoder, self.force_init_state, opts=opts)
prev_z = torch.clamp(prev_z, -1.0, 1.0)
img = rescale(prev_z)
imgs = [img]
init_state_save = self.force_init_state.clone()
# 'STOP' action
if 'carla' in self.opts.data:
self.current_action[:, 0] = 0
self.current_action[:, 1] = -5
elif 'gibson' in self.opts.data:
self.current_action[:, 0] = 0
self.current_action[:, 1] = 0
self.current_action[:, 2] = 0
elif 'pilotnet' in self.opts.data:
self.current_action[:, 0] = -3
self.current_action[:, 1] = 0
else:
print('\n\nNot implemented\n\n')
exit(-1)
result = self.reset_lstm([self.screen_being_edited], [self.current_action], no_reset=True)
result = [torchvision.transforms.ToPILImage()(self.upsample(result).clamp(0, 1)[0].cpu())]
# adapt model to the new screen for 3 more time steps
for i in range(3):
# 'STOP' action
if 'carla' in self.opts.data:
self.current_action[:, 0] = 0
self.current_action[:, 1] = -5
elif 'gibson' in self.opts.data:
self.current_action[:, 0] = 0
self.current_action[:, 1] = 0
self.current_action[:, 2] = 0
elif 'pilotnet' in self.opts.data:
self.current_action[:, 0] = -3
self.current_action[:, 1] = 0
else:
print('\n\nNot implemented\n\n')
exit(-1)
self.force_init_state = self.screen_being_edited
self.prev_screen = self.screen_being_edited
result, _ = self.stepper()
return result
def reset_z_theme(self, init=False):
'''
randomize z_theme
'''
if self.trainer.netG.theme_d <= 0:
self.force_theme = None
return
self.reset_save_arrays()
self.force_theme = utils.check_gpu(opts.gpu, torch.randn(1, trainer.netG.theme_d))
if not init:
return self.reset_zs(self.cur_style, self.cur_content, self.force_theme, reset_engine=False)
def reset_z_aindep(self, init=False, style=None):
'''
randomize z_aindep
'''
self.reset_save_arrays()
if not self.trainer.netG.disentangle_style:
self.force_style = None
return
# reset hidden state
self.style_h = None
new_style = utils.check_gpu(opts.gpu, torch.randn(1, trainer.netG.opts.hidden_dim)) if style is None else style
if not init:
# reset the image input with new style
return self.reset_zs(new_style, self.cur_content, self.cur_theme, reset_engine=False)
else:
# random vector used to randomly initialize the initial img
self.force_style = new_style
def reset_z_adep(self):
'''
randomize z_adep
'''
self.reset_save_arrays()
z_aindep = self.force_style if self.force_style is not None else self.cur_style
z_theme = self.force_theme if self.force_theme is not None else self.cur_theme
z_adep = utils.check_gpu(opts.gpu, torch.randn(1, self.trainer.netG.opts.hidden_dim))
return self.reset_zs(z_aindep, z_adep, z_theme, reset_engine=False)
def reset_zs(self, z_aindep, z_adep, z_theme, reset_engine=False):
'''
get the new screen with corresponding zs
'''
with torch.no_grad():
if reset_engine:
self.reset_engine_hidden()
self.force_init_state = self.trainer.netG.get_final_output(z_aindep, z_adep, z_theme)
new_screen = utils.run_latent_decoder(latent_decoder, self.force_init_state, opts=opts)
new_screen = torch.clamp(new_screen, -1.0, 1.0)
new_screen = rescale(new_screen)
return torchvision.transforms.ToPILImage()(new_screen.clamp(0, 1)[0].cpu())
def reset(self, initial_screen):
'''
reset everything
'''
if torch.cuda.is_available():
torch.cuda.empty_cache()
if initial_screen is None:
tmp = utils.check_gpu(opts.gpu, torch.randn(1, 512))
if add_mean_std:
states = [(latent_decoder.style(tmp) - latent_mean) / latent_std]
else:
states = [latent_decoder.style(tmp)]
actions = [torch.FloatTensor([0] * 10).unsqueeze(0)]
else:
states = [torch.FloatTensor(0).unsqueeze(0)]
actions = [torch.FloatTensor([0] * 10).unsqueeze(0)]
states = [utils.check_gpu(opts.gpu, a) for a in states]
actions = [utils.check_gpu(opts.gpu, a) for a in actions]
img = self.reset_lstm(states, actions)
return [torchvision.transforms.ToPILImage()(img[0].cpu())]
def update_action(self, cmd):
'''
update the current action given from the ui
'''
if cmd == 'stop':
self.ac = [0, 0]
elif 'carla' in self.opts.data:
self.ac = [cmd['yaw'], cmd['speed']]
elif 'pilotnet' in self.opts.data:
self.ac = [cmd['speed'], -2 * cmd['yaw']]
elif 'gibson' in self.opts.data:
self.ac = [cmd['speed'], 0, -1 * cmd['yaw']]
else:
pass
a_t = [0] * self.opts.action_space
for i in range(len(self.ac)):
a_t[i] = self.ac[i]
a_t = np.asarray(a_t).astype('float32')
print(a_t)
self.current_action = utils.check_gpu(opts.gpu, torch.FloatTensor(a_t).unsqueeze(0))
def reset_engine_hidden(self):
h, c = self.trainer.netG.engine.init_hidden(1)
h = utils.check_gpu(self.opts.gpu, h)
c = utils.check_gpu(self.opts.gpu, c)
self.prev_rnn_state[0] = h
self.prev_rnn_state[1] = c
def stepper(self):
start_time = time.time()
with torch.no_grad():
state_z = None
base_imgs = []
if self.do_recording and not 'output' in self.save_seq[0]:
self.firstImage = utils.run_latent_decoder(latent_decoder, self.prev_screen, opts=opts)
self.firstImage = torch.clamp(self.firstImage, -1.0, 1.0)
self.firstImage = rescale(self.firstImage)
self.save_seq[0]['output'] = np.uint8(np.transpose(self.firstImage.clamp(0, 1)[0].cpu() * 255, (1,2,0)))
prev_screen_save = torch.clone(self.prev_screen)
num_reset = opts.num_steps // 3
do_reset, resetStyle = False, False
self.reset_counter += 1
if self.reset_counter > num_reset:
do_reset = True
self.reset_counter = 0
if do_reset and len(self.keep_screens) > 0:
self.reset_lstm(self.keep_screens[-3:], self.keep_actions[-3:], force_state_len=True)
self.resetStyle = True
print(self.step)
if not self.freeAction and self.optimized_seq is not None and self.step < len(self.optimized_seq['optimized_actions']):
a_t = [0] * self.opts.action_space
if 'gibson' in self.opts.data and len(self.optimized_seq['optimized_actions'][0]) < 3:
a_t[0] = self.optimized_seq['optimized_actions'][self.step][0]
a_t[2] = self.optimized_seq['optimized_actions'][self.step][1]
else:
for i in range(len(self.ac)):
a_t[i] = self.optimized_seq['optimized_actions'][self.step][i]
a_t = np.asarray(a_t).astype('float32')
self.current_action = utils.check_gpu(opts.gpu, torch.FloatTensor(a_t).unsqueeze(0))
d = trainer.netG.run_step(
self.prev_screen, self.prev_rnn_state[0],
self.prev_rnn_state[1], self.current_action, 1,
step=self.time_step, style_h=self.style_h, \
play=True,
force_style=self.force_style, \
force_init_state=self.force_init_state, resetStyle=self.resetStyle, \
logvars=self.optimized_logvars, logvars_style=self.optimized_logvars_style, logvars_theme=self.optimized_logvars_theme)
self.prev_screen, self.style_h = d['prev_z'], d['style_h']
self.resetStyle=False
self.force_style = None
self.force_init_state = None
self.force_theme = None
self.cur_theme = d['z_theme']
self.cur_style = d['z_aindep']
self.cur_content = d['z_adep']
self.prev_rnn_state = [d['h'], d['c']]
self.keep_screens.append(prev_screen_save)
self.keep_actions.append(self.current_action)
self.step += 1
self.time_step += 1
prev_z = utils.run_latent_decoder(latent_decoder, self.prev_screen, opts=opts)
img = rescale(prev_z)
imgs = [img]
result = []
for i in range(len(imgs)):
result.append(torchvision.transforms.ToPILImage()(self.upsample(imgs[i]).clamp(0, 1)[0].cpu()))
print('\n\nTook: ' + str(time.time() - start_time) + '\n\n')
cur_action = self.current_action.cpu().numpy()[0][:2]
if 'gibson' in self.opts.data:
cur_action = np.array([self.current_action.cpu().numpy()[0][0], self.current_action.cpu().numpy()[0][2]])
if 'carla' in self.opts.data :
op_tmp = -cur_action[0]
cur_action[0] = cur_action[1]
cur_action[1] = op_tmp
if self.do_recording:
seq = {'output': np.uint8(np.transpose(imgs[0].clamp(0, 1)[0].cpu() * 255, (1,2,0)))}
self.save_seq.append(seq)
self.save_seq[-2]['cur_action'] = cur_action
return result, None
def change_from_list(self, kind, name):
if kind == 'theme':
vec = self.themes[name]
return self.reset_zs(self.cur_style, self.cur_content, vec, reset_engine=False)
elif kind == 'part' and name != 'random':
vec = self.parts[name]
h = self.part_h_coords[name]
w = self.part_w_coords[name]
self.cur_selected_part = vec
return self.change_grid(w, h)
def save_state(self, filename):
np.save(os.path.join('/home/seung/Projects/simulator_v2/simulator/init_screen', filename), self.prev_screen.cpu().numpy())
def save_vectors(self, filename):
self.selected_themes.append(self.cur_theme.cpu().numpy())
vectors = {}
vectors['theme'] = np.squeeze(np.array(self.selected_themes), axis=1)
if self.part_vector is not None:
self.selected_parts.append(self.part_vector)
vectors['selected_parts'] = np.squeeze(np.array(self.selected_parts), axis=1)
np.save(filename, vectors)
def load_npy(self, filename):
if os.path.isdir(filename):
parentdir = filename
fnames = os.listdir(filename)
filename = ''
for fn in fnames:
if fn.endswith('.npy'):
filename += os.path.join(parentdir, fn) + ','
filename = filename[:-1]
themes, theme_names = {}, []
parts, part_names, part_h_coords, part_w_coords = {}, [], {}, {}
for f in filename.split(','):
data = np.load(f, allow_pickle=True).item()
info = os.path.basename(f).split('.')[0].split('_')
name = info[0]
kind = info[1]
if kind == 'theme' or kind == 'holistic_style':
try:
themes[name] = utils.check_gpu(opts.gpu, torch.FloatTensor(np.mean(data['theme'], axis=0)).unsqueeze(0))
except:
themes[name] = utils.check_gpu(opts.gpu, torch.FloatTensor(np.mean(data['holistic_style'], axis=0)).unsqueeze(0))
theme_names.append(name)
elif kind == 'part':
h, w = info[2].split('-')
parts[name] = utils.check_gpu(opts.gpu, torch.FloatTensor(np.mean(data['selected_parts'], axis=0)).unsqueeze(0))
part_names.append(name)
part_h_coords[name] = h
part_w_coords[name] = w
else:
print('wrong kind in load_npy')
exit(-1)
theme_names.sort()
part_names.sort()
self.themes = themes
self.parts = parts
self.part_h_coords = part_h_coords
self.part_w_coords = part_w_coords
return theme_names, part_names
def load_screen(self, name):
initizl_z = np.load(name)
return self.reset_lstm([utils.check_gpu(opts.gpu, torch.FloatTensor(initizl_z))], [None], no_reset=True)
def stop_recording(self):
pass
if __name__ == '__main__':
next_id = 0
serve()