-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneural.cpp
161 lines (138 loc) · 4.65 KB
/
neural.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#include "neural.hpp"
typedef unsigned char pix;
const pix height=28,width=28,Max=255,zoom=25;
dlib::interpolate_nearest_neighbor inn;
dmat activation_function(dmat inp) {
dmat ret = 1 / ( 1 + exp( -1 * inp ));
return ret;
}
dmat inverse_activation_function(dmat tar) {
dmat ret = log( tar )- log( 1 - tar );
return tar;
}
neuralNetwork::neuralNetwork(int inputnodes,int hiddennodes,int outputnodes,fract learningrate) {
inodes=inputnodes;
onodes=outputnodes;
hnodes=hiddennodes;
lr=learningrate;
std::random_device r;
std::mt19937_64 e(r());
std::normal_distribution<> ih(0,pow(inodes,-0.5)),ho(0,pow(hnodes,-0.5));
wih = dmat(inodes,hnodes);
who = dmat(hnodes,onodes);
for(auto i:std::views::iota(0,inodes)) {
for(auto j:std::views::iota(0,hnodes)) {
wih(i,j)=ih(e);
}
}
for(auto i:std::views::iota(0,hnodes)) {
for(auto j:std::views::iota(0,onodes)) {
who(i,j)=ho(e);
}
}
}
void neuralNetwork::train(dmat inputs_list,dmat targets_list) {
dmat inputs=trans(inputs_list);
dmat targets=trans(targets_list);
dmat hidden_inputs = inputs * wih;
dmat hidden_outputs = activation_function(hidden_inputs);
dmat final_inputs = hidden_outputs * who;
dmat final_outputs = activation_function(final_inputs);
dmat output_errors = targets - final_outputs;
dmat hidden_errors = output_errors * trans(who);
//for 1/(1 + e^-x) activation function
who += lr * trans(hidden_outputs) * pointwise_multiply(pointwise_multiply(output_errors,final_outputs),(1 - final_outputs));
wih += lr * trans(inputs) * pointwise_multiply(pointwise_multiply(hidden_errors,hidden_outputs),(1 - hidden_outputs));
}
dmat neuralNetwork::query(dmat inputs_list) {
dmat inputs = trans(inputs_list);
dmat hidden_inputs = inputs * wih;
dmat hidden_outputs = activation_function(hidden_inputs);
dmat final_inputs = hidden_outputs * who;
dmat final_outputs = activation_function(final_inputs);
return final_outputs;
}
dmat neuralNetwork::bquery(dmat targets_list,bool myVersion) {
dmat final_outputs = trans(targets_list);
dmat final_inputs = inverse_activation_function(final_outputs);
dmat hidden_outputs = final_inputs * trans(who);
if(!(myVersion)) {
hidden_outputs -= dlib::min(hidden_outputs);
hidden_outputs /= dlib::max(hidden_outputs);
hidden_outputs *=0.98;
hidden_outputs +=0.01;
}
dmat hidden_inputs = inverse_activation_function(hidden_outputs);
dmat inputs = hidden_inputs * trans(wih);
inputs -= dlib::min(inputs);
inputs /= dlib::max(inputs);
inputs *= 0.98;
inputs += 0.01;
return inputs;
}
dmat Num2Dmat(int n) {
dmat ret(10,1);
ret = 0.01;
ret(n)=0.99;
return ret;
}
std::vector<int> Dmat2Vec(dmat inp) {
std::vector<int> ret;
for(auto i:std::views::iota(0,inp.size())) {
ret.push_back(inp(i)*Max);
}
return ret;
}
void displayImg(std::vector<int> img,std::string title) { //vector<int> of 28*28 (784) elements
dlib::array2d<dlib::rgb_pixel> a(height,width),b(height*zoom,width*zoom);
for(pix i=0; i<height; ++i) {
for(pix j=0; j<width; ++j) {
a[i][j]=dlib::rgb_pixel{(pix)(Max-img[i*height+j]),(pix)(Max-img[i*height+j]),(pix)(Max-img[i*height+j])};
}
}
dlib::resize_image(a,b,inn);
dlib::image_window my_window(b,title);
my_window.wait_until_closed();
}
void train(neuralNetwork& demo,std::string filename,bool print) {
if(print)std::cout<<"Loading train database\n";
rapidcsv::Document doc(filename,rapidcsv::LabelParams(-1,-1));
if(print)std::cout<<"Training Started\n";
int trainSize = doc.GetRowCount();
for(auto i:std::views::iota(0,trainSize)) {
std::vector<double> row = doc.GetRow<double>(i);
dmat targets = dlib::zeros_matrix<double>(10,1);
targets += 0.01;
targets(row[0])=0.99;
row.erase(row.begin());
dmat inputs(row.size(),1);
for(long long unsigned int j=0; j<row.size(); ++j) {
inputs(j,0)=row[j]*0.99/Max + 0.01;
}
demo.train(inputs,targets);
if(print) {
if(!(i%(trainSize/10))) {
std::cout<<i<<"/"<<trainSize<<'\n';
}
}
}
}
fract test(neuralNetwork& demo,std::string filename) {
fract rc=0;
std::cout<<"Loading test database\n";
rapidcsv::Document doc(filename,rapidcsv::LabelParams(-1,-1));
std::cout<<"Testing started\n";
int testSize=doc.GetRowCount();
for(auto i:std::views::iota(0,testSize)) {
std::vector<int> row = doc.GetRow<int>(i);
dmat inputs(row.size()-1,1);
for(long long unsigned int j=0; j<row.size()-1; ++j) {
inputs(j,0)=row[j+1]*0.99/Max + 0.01;
}
dmat output = demo.query(inputs);
rc+=(row[0]==dlib::index_of_max(output))?1:0;
}
rc = rc/testSize*100;
std::cout<<"The result is "<<rc<<"%\n";
return rc;
}