-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathsample_age4grp_experiment.yaml
77 lines (77 loc) · 2.9 KB
/
sample_age4grp_experiment.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
experiment_setup_parameters:
age_bins:
- age0to19
- age20to39
- age40to59
- age60to100
fixed_parameters_region_specific:
N:
expand_by_age: True
'NMH_catchment': [78401,96245,79829,60526]
#'Chicago': ,
#'IL': ,
'EMS_1': [170342, 184052, 203274, 182064]
'EMS_2': [246836, 291953, 311148, 279459]
'EMS_3': [128558, 147943, 181366, 163605]
'EMS_4': [156230, 178549, 199940, 166815]
'EMS_5': [89601, 103718, 113788, 112211]
'EMS_6': [170529, 215422, 212023, 194309]
'EMS_7': [459863, 455969, 532097, 377955]
'EMS_8': [406488, 439749, 492527, 344784]
'EMS_9': [482757, 506403, 591629, 399718]
'EMS_10': [252497, 252957, 313926, 238921]
'EMS_11': [656456, 889748, 697571, 500905]
fixed_parameters_global:
initialAs:
expand_by_age: True
list: [3, 3, 3, 3]
speciesS:
expand_by_age: True
custom_function: subtract
function_kwargs: {'x1': N, 'x2': initialAs}
C: # all locations
matrix: # Unnormalized contact matrix
- [1.14254471871631, 0.126439684412323, 0.0353749597652072, 0.106736939258122]
- [0.126439684412323, 2.88407596706098, 0.12307674904548, 0.0970738335146058]
- [0.0353749597652072, 0.12307674904548, 0.167237414993413, 0.0332514267842826]
- [0.106736939258122, 0.0970738335146058, 0.0332514267842826, 0.0524833539522054]
sampled_parameters:
'time_to_infectious':
np.random: uniform
function_kwargs: {'low': 1, 'high': 2}
time_to_hospitalization:
EMS_11:
# Give a region-specific distribution by nesting it under the region name
np.random: uniform
function_kwargs: {'low':2, 'high':10}
EMS_10:
# If expanding by age, provide a list of kwargs
# (and optionally a list of distribution names)
# with the same lengths as the age_bins.
# If only a single distribution name is given, it will be used
# for all age bins.
expand_by_age: True
np.random: uniform
function_kwargs:
- {'low': 2, 'high': 4}
- {'low': 3, 'high': 5}
- {'low': 5, 'high': 7}
- {'low': 7, 'high': 9}
# Any distribution not nested under a region will be used for regions
# which are not otherwise specified.
np.random: uniform
function_kwargs: {'low':15, 'high':30}
recovery_time_crit:
# If "expand_by_age" is True, but only one distribution is provided,
# the same distribution will be used for each age group.
expand_by_age: True
np.random: exponential
function_kwargs: {'scale': 0.5}
recover_rate_crit_age0to19:
# You can manually enter the distribution for an age group.
# If it comes after an automatically generated set of age distributions,
# as with the default `recovery_time_crit` above, it will overwrite the default.
# NB: Order matters! The last distribution will be used for the age bin.
np.random: exponential
function_kwargs: {'scale': 1.5}
fitted_parameters: