-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_nuswide.py
123 lines (104 loc) · 4.34 KB
/
run_nuswide.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#!/usr/bin/python
#example script for training and test on NUS-WIDE dataset
import os
import glob
import shutil
import subprocess
import drawVis
import re
def train(dataset, iaes, taes, dim):
"""train image sae & text sae simultaneously; train msae"""
print '###########Training#################'
#output_dir=os.path.join('../data/',dataset,'output','output'+str(dim))
config=os.path.join("config/",dataset,"config"+str(dim)+".ini")
cmd1="python main.py -a "
for ae in iaes:
cmd1+=ae+" "
cmd1+=config
print cmd1
isae=subprocess.Popen(cmd1, shell=True)
isae.wait()
cmd2="python main.py -a "
for ae in taes:
cmd2+=ae+" "
cmd2+=config
print cmd2
tsae=subprocess.Popen(cmd2, shell=True)
tsae.wait()
cmd3="python main.py -a msae "+config
print cmd3
subprocess.call(cmd3,shell=True)
def test(dataset, dim, qsize, statfile=None):
""" do multi-modal retrieval on test dataset; save MAP to result.txt """
print '#############Test###############'
input_dir=os.path.join("../data", dataset, "input")
output_dir=os.path.join("../data", dataset, "output", "output"+str(dim))
inputImg=os.path.join(input_dir,"testImg.npy")
inputTxt=os.path.join(input_dir, "testTxt.npy")
modelfile=os.path.join(output_dir,"msae","model")
if statfile:
statfile=os.path.join(input_dir, statfile)
subprocess.call(["python","main.py", "-e", modelfile, inputImg, inputTxt, statfile, output_dir])
else:
subprocess.call(["python","main.py", "-e", modelfile, inputImg, inputTxt, output_dir])
imgft=os.path.join(output_dir,"img.npy")
txtft=os.path.join(output_dir,"txt.npy")
querypath=os.path.join(input_dir,"query.npy")
gndpath=os.path.join(input_dir,"testGnd.npy")
subprocess.call(["python", "main.py", "-s", querypath, gndpath, imgft, txtft, "euclidean", qsize])
subprocess.call(["python", "main.py", "-p", "tmp/","map"])
def last_vis_file(vis_dir):
vis_files=glob.glob(vis_dir+"/*.npy")
vis_files.sort()
vis_files.sort(key=len)
print vis_files[-1]
return vis_files[-1]
def visualize(dataset, iaes, taes, dim, validation_size=None):
"""visualize training process by project features into 2-d space;
1. sample and plot latent features after each training epoch
2. plot MAPs after each training epoch
both features and MAPs are for validation dataset
"""
train(dataset, iaes, taes, dim)
dim=str(dim)
output_dir=os.path.join("../data", dataset, "output", "output"+dim)
isae_vis_dir=os.path.join(output_dir,"isae"+dim, "vis")
tsae_vis_dir=os.path.join(output_dir,"tsae"+dim, "vis")
msae_vis_dir=os.path.join(output_dir,"msae","vis")
shutil.copy(last_vis_file(isae_vis_dir),os.path.join(msae_vis_dir,"0img.npy"))
shutil.copy(last_vis_file(tsae_vis_dir),os.path.join(msae_vis_dir,"0txt.npy"))
if not os.path.exists("vis"):
os.mkdir("vis")
if os.path.exists("sample.npy"):
subprocess.call(["python", "drawVis.py", msae_vis_dir, "sample.npy", "vis", "-f", ".png"])
elif validation_size:
subprocess.call(["python", "drawVis.py", msae_vis_dir, "sample.npy", "vis", "-f", ".png", "-s", str(validation_size)])
print "images are in vis dir"
else:
print "for sample.npy and validation_size, one must be provided"
#plot MAPs w.r.t. epoch
perf=subprocess.check_output(['python','main.py','-p', os.path.join(output_dir,'msae','perf'),'map'])
lines=perf.split('\n')
maps=[]
pat=re.compile(r'0\.[0-9]{4}')
for line in lines:
if 'qimg' in line or 'qtxt' in line:
vals=line.split(' ')
map=[float(val) for val in vals[1:] if pat.match(val)]
maps.append(map)
print maps
drawVis.drawMAP(maps, "vis/map.png")
if __name__=='__main__':
"""to run on other datasets, just update the following information"""
dataset='nuswide'
qsize='1000'
for dim in [32,24,16]:
iaes=['iae500-128','iae128-%d' % dim, 'isae%d' % dim]
taes=['tae1k-128', 'tae128-%d' % dim, 'tsae%d' % dim]
train(dataset, iaes, taes, dim)
test(dataset, dim, qsize)
#for training visualization
dim=2
iaes=['iae500-128', 'iae128-16', 'iae16-%d' % dim, 'isae%d' % dim]
taes=['tae1k-128','tae128-16', 'tae16-%d' % dim, 'tsae%d' % dim]
visualize(dataset, iaes, taes, dim, 10000)