-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoneVSmulti_demo.py
54 lines (42 loc) · 1.44 KB
/
oneVSmulti_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import networkmodel
import myGA
import KLDivergence
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
import multiprocessing
import time
from sklearn.neighbors import KernelDensity
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import LeaveOneOut
from scipy.stats import entropy
from geneticalgorithm import geneticalgorithm as ga
def get_ans(param):
netinfo = networkmodel.Iterate(param, 200, 200)
return [netinfo.iloc[-1, 5], netinfo.iloc[-1, 7]]
def get_answers(params):
with multiprocessing.Pool() as pool:
pool_out = pool.map(get_ans, params)
return pool_out
if __name__ == "__main__":
params = [[0.03, 0.0015]] * 100
start_time = time.time()
ANS = get_answers(params)
print(ANS)
duration = time.time() - start_time
print(f"Duration {duration} seconds")
# true_param = [0.03, 0.0015]
# num_of_sample = 100
# TRUE_ANS = []
# start_time = time.time()
# for i in range(num_of_sample):
# netinfo_ans = networkmodel.Iterate(true_param, 200, 200)
# TRUE_ANS.append([netinfo_ans.iloc[-1,5], netinfo_ans.iloc[-1,7]])
# print(TRUE_ANS)
# duration = time.time() - start_time
# print(f"Duratioin {duration} seconds")
# x_ans = np.array([ans[0] for ans in TRUE_ANS])
# y_ans = np.array([ans[1] for ans in TRUE_ANS])
# plt.scatter(x_ans, y_ans, c='black', s=20, edgecolor='white')
# plt.show()