-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path05-two-samples-two-proportions-z copy.py
165 lines (134 loc) · 6.47 KB
/
05-two-samples-two-proportions-z copy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from scipy import stats
import numpy as np
import pandas as pd
import math
# np.random.seed(seed=3)
ALPHA = 0.05
P_1_SIZE = 10000
P_2_SIZE = 10000
S_1_SIZE = 40 # 40 200 1000
S_2_SIZE = 100 # 100 400 500
P_1_PROPORTION = 0.7 # 0.7 0.5
P_2_PROPORTION = 0.5
NUMBER_OF_TESTS = 1000
POP_PROB_DENS_X = np.arange(0, P_1_SIZE + 1)
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom.html
POP_PROB_DENS_Y = stats.binom.pmf(POP_PROB_DENS_X, n = P_1_SIZE, p = P_1_PROPORTION)
POP_PROB_DENS_X = np.array(POP_PROB_DENS_X) / P_1_SIZE
POP_PROB_MAX = stats.binom.pmf(P_1_SIZE * P_1_PROPORTION, n = P_1_SIZE, p = P_1_PROPORTION)
SAM_1_PROB_DENS_X = np.arange(0, S_1_SIZE + 1)
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom.html
SAM_1_PROB_DENS_Y = stats.binom.pmf(SAM_1_PROB_DENS_X, n = S_1_SIZE, p = P_1_PROPORTION)
SAM_1_PROB_DENS_X = np.array(SAM_1_PROB_DENS_X) / S_1_SIZE
SAM_1_PROB_MAX = stats.binom.pmf(S_1_SIZE * P_1_PROPORTION, n = S_1_SIZE, p = P_1_PROPORTION)
SAM_2_PROB_DENS_X = np.arange(0, S_2_SIZE + 1)
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom.html
SAM_2_PROB_DENS_Y = stats.binom.pmf(SAM_2_PROB_DENS_X, n = S_2_SIZE, p = P_2_PROPORTION)
SAM_2_PROB_DENS_X = np.array(SAM_2_PROB_DENS_X) / S_2_SIZE
SAM_2_PROB_MAX = stats.binom.pmf(S_2_SIZE * P_2_PROPORTION, n = S_2_SIZE, p = P_2_PROPORTION)
# PROB_MAX = max(POP_PROB_MAX, SAM_PROB_MAX)
# PROB_MAX = POP_PROB_MAX
PROB_MAX = max(SAM_1_PROB_MAX, SAM_2_PROB_MAX)
PROB_MIN = min(SAM_1_PROB_MAX, SAM_2_PROB_MAX)
fig, ax = plt.subplots(1, 1)
ax.grid(axis='both', linestyle='--', color='0.95')
ax.xaxis.set_major_locator(ticker.MultipleLocator(0.05))
ax.set_xlim(-0.1, 1.1)
ax.yaxis.set_major_locator(ticker.MultipleLocator(PROB_MAX * 0.1))
# ax.set_ylim(-0.2, 0.2)
# ax.set_yscale("log")
text0 = ax.text(0.05, PROB_MAX * 0.5, f'', fontsize=9)
text_p_dash_1 = ax.text(0, 0, f'p̄1')
text_p_dash_2 = ax.text(0, 0, f'p̄2')
text_p_dash_diff = ax.text(0, 0, f'p̄1-p̄2')
text_p_1 = ax.text(P_1_PROPORTION, -0.004, f'p1')
text_p_2 = ax.text(P_2_PROPORTION, -0.004, f'p2')
text_p_diff = ax.text(P_1_PROPORTION-P_2_PROPORTION, -0.004, f'p1-p2')
vlines0 = ax.vlines([], [], [], color='r', alpha=1.0)
vlines1 = ax.vlines([], [], [], color='r', alpha=1.0)
vlines2 = ax.vlines([], [], [], color='r', alpha=1.0)
vlines3 = ax.vlines([], [], [], color='r', alpha=1.0)
fill = ax.fill([], [], alpha=0.4, hatch="X", color='lightblue')
# Distribution
# ax.plot(POP_PROB_DENS_X, POP_PROB_DENS_Y, marker='o', linestyle='dashed', alpha=1.0, linewidth=2.0)
ax.plot(SAM_1_PROB_DENS_X, SAM_1_PROB_DENS_Y, color='b', marker='o', linestyle='dashed', alpha=1.0, linewidth=2.0)
ax.plot(SAM_2_PROB_DENS_X, SAM_2_PROB_DENS_Y, color='g', marker='o', linestyle='dashed', alpha=1.0, linewidth=2.0)
# Population Mean
ax.vlines([P_1_PROPORTION], [0], [SAM_1_PROB_MAX], color='red', linestyle='dashed', linewidth=3)
ax.vlines([P_2_PROPORTION], [0], [SAM_2_PROB_MAX], color='red', linestyle='dashed', linewidth=3)
ax.vlines([P_1_PROPORTION - P_2_PROPORTION], [0], [PROB_MIN], color='red', linestyle='dashed', linewidth=3)
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom.html
binom_randoms = np.array([
stats.binom.rvs(size=NUMBER_OF_TESTS, n = S_1_SIZE, p = P_1_PROPORTION),
stats.binom.rvs(size=NUMBER_OF_TESTS, n = S_2_SIZE, p = P_2_PROPORTION)
]).T
h0_counter = 0
h1_counter = 0
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom.html
for i, x in enumerate(binom_randoms):
s1_proportion = x[0] / S_1_SIZE
s2_proportion = x[1] / S_2_SIZE
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html
z_alpha = stats.norm.ppf(1 - ALPHA/2) # alpha divide by 2 - two-tailed test
moe = z_alpha
moe *= math.sqrt(s1_proportion*(1 - s1_proportion)/S_1_SIZE + s2_proportion*(1 - s2_proportion)/S_2_SIZE)
if ((s1_proportion - s2_proportion) - moe) <= P_1_PROPORTION - P_2_PROPORTION \
and P_1_PROPORTION - P_2_PROPORTION <= ((s1_proportion - s2_proportion) + moe):
h0_counter += 1
else:
h1_counter += 1
if i < 50 or i == NUMBER_OF_TESTS - 1:
text0.set_text(
f'Significance Level (α): {ALPHA * 100:.2f} % \n'
+ f'Z({1 - ALPHA/2:.3f}) Two-Tailed: {z_alpha:.6f}\n\n'
+ f'Population Proportion (p1): {P_1_PROPORTION:.4f} \n'
+ f'Population Proportion (p2): {P_2_PROPORTION:.4f} \n\n'
+ f'Sample Size 1: {S_1_SIZE} \n'
+ f'Sample Size 2: {S_2_SIZE} \n'
+ f'Sample Proportion 1 (p̄1): {s1_proportion:.4f} \n'
+ f'Sample Proportion 2 (p̄2): {s2_proportion:.4f} \n\n'
+ f'Margin of Error (MOE): {moe:.4f} \n\n'
+ f'H0 (p1-p2={P_1_PROPORTION - P_2_PROPORTION:.2f}) is TRUE: {h0_counter} (Correct)\n'
+ f'H1 (p1-p2≠{P_1_PROPORTION - P_2_PROPORTION:.2f}) is TRUE: {h1_counter} (False positive)\n\n'
+ f'Actuall Type I Error Percent: {100 * h1_counter / (h0_counter + h1_counter):.2f} %'
)
text_p_dash_1.set_position((s1_proportion, SAM_1_PROB_MAX))
text_p_dash_2.set_position((s2_proportion, SAM_2_PROB_MAX))
text_p_dash_diff.set_position((s1_proportion - s2_proportion, PROB_MIN))
# Sample Mean
vlines0.remove()
vlines0 = ax.vlines([s1_proportion], [0], [SAM_1_PROB_MAX], color='b', linestyle='dashed', linewidth=3)
vlines1.remove()
vlines1 = ax.vlines([s2_proportion], [0], [SAM_2_PROB_MAX], color='g', linestyle='dashed', linewidth=3)
vlines2.remove()
vlines2 = ax.vlines([s1_proportion-s2_proportion], [0], [PROB_MIN], color='k', linestyle='dashed', linewidth=3)
# Confidence Interval
vlines3.remove()
vlines3 = ax.vlines([
(s1_proportion - s2_proportion) - moe,
(s1_proportion - s2_proportion) + moe
], [
0,
0
], [
PROB_MIN,
PROB_MIN
], color='blue', linestyle='dashed', linewidth=1)
fill[0].remove()
fill = ax.fill([
(s1_proportion - s2_proportion) - moe,
(s1_proportion - s2_proportion) - moe,
(s1_proportion - s2_proportion) + moe,
(s1_proportion - s2_proportion) + moe
], [
0,
PROB_MIN,
PROB_MIN,
0
], alpha=0.4, hatch="//", color='lightblue')
plt.tight_layout()
plt.pause(0.5)
plt.tight_layout()
plt.show()