-
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path06-2-distribution-beta.py
53 lines (43 loc) · 1.6 KB
/
06-2-distribution-beta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from pathlib import Path
import pandas as pd
import numpy as np
from scipy import stats
import matplotlib.pylab as plt
import matplotlib.ticker as ticker
import math
import random
P_NUM = 100
data = pd.DataFrame(data={ 'p': np.linspace(0, 1, P_NUM + 1) })
ax = plt.subplot2grid((1, 1), (0, 0))
X = np.linspace(0, 1, P_NUM + 1)
for i in range(26):
a = (i / 5)
b = 5
data['distr'] = data['p']**a * (1 - data['p'])**b
data['distr'] /= data['distr'].sum()
# print(data)
# print(data['distr'].sum())
# print(np.sum(stats.beta.pdf(X, a + 1, b + 1) / 100))
ax.cla()
ax.bar(data['p'], data['distr'], width=0.008, alpha=0.4)
# https://stackoverflow.com/questions/65391178/scipy-normal-pdf-summing-to-values-larger-than-1
ax.plot(X, stats.beta.pdf(X, a + 1, b + 1) / P_NUM) # / P_NUM due to discrete X values
ax.text(i / 50, data['distr'].max(), f'Beta(α={a:.2f},β={b:.2f})')
ax.grid(axis='both', linestyle='--', color='0.95')
plt.tight_layout()
plt.pause(0.001)
for i in range(26):
a = 5
b = 5 - (i / 5)
data['distr'] = data['p']**a * (1 - data['p'])**b
data['distr'] /= data['distr'].sum()
ax.cla()
ax.bar(data['p'], data['distr'], width=0.008, alpha=0.4)
# https://stackoverflow.com/questions/65391178/scipy-normal-pdf-summing-to-values-larger-than-1
ax.plot(X, stats.beta.pdf(X, a + 1, b + 1) / P_NUM) # / P_NUM due to discrete X values
ax.text(0.5 + i / 50, data['distr'].max(), f'Beta(α={a:.2f},β={b:.2f})')
ax.grid(axis='both', linestyle='--', color='0.95')
plt.tight_layout()
plt.pause(0.001)
plt.tight_layout()
plt.show()